Difference between revisions of "Dynamic Models"

From SoftMC-Wiki
Jump to: navigation, search
(Linear Axes: add image of vertical liner axis with a spring)
(Dynamic Model 2 - Gravity: add explanation)
Line 371: Line 371:
  
 
=== Dynamic Model 2 - Gravity ===
 
=== Dynamic Model 2 - Gravity ===
 +
This dynamic model is for cases where the robot moves very slowly.<br />
 +
In such cases, the accelerations and velocities of the joints of the robot have little effect on the joints torques. The joints torques are mainly affected by gravity and friction. <br />
 +
This model includes only the gravity and friction part of the PUMA robot dynamic model.<br />
  
 
{|border="1" width="80%"
 
{|border="1" width="80%"

Revision as of 06:20, 8 October 2018

This page gives an overview over all implemented dynamic models.

General considerations

  • Friction is handled on axis basis. The parameters for friction are set for each axis separately.
  • Torque (Force) is always expressed in [Nm] ([N])

Rotational Axes

Dynamic Model 1 - simple rotary axis

Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
Model equation


Dynamic Model 2 - horizontal crank-arm axis

Horizontal crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
Model equation


Dynamic Model 3 - vertical crank-arm axis

Vertical crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
3 Mass (without payload) * Gravity * Distance to center of mass
4 Gravity * Distance to Payload
Model equation

Linear Axes

Dynamic Model 1 - horizontal axis

Horizontal linear axis
Number Parameter Comments
1 Total mass of the moved part.
Model equation


Dynamic Model 2 - vertical or tilted axis

Vertical linear axis
Number Parameter Comments
1 Total mass of the moved part.
2 Constant force due to gravity.
3 Gravity coefficient used to consider payload mass. (g = 9.80665)
Model equation


Dynamic Model 3 - vertical axis with a spring

Vertical linear axis with a spring
Number Parameter Comments
1 Total mass of the moved part. [kg]
2 The stiffness constant of the spring. [kg/s^2]
3 The stiffness constant times the relaxation position of the spring. [kg*m/s^2]
Model equation

Traverse Arm Robots

Dynamic Model 1

Traverse Arm robot
Number Parameter Comments
1
2
3
4
5
6
7


Scara Robots

Dynamic Model 1

scara robot
Number Parameter Comments
1
2
3
4
5
6
7
8

Delta Robots

Dynamic Model 1

Delta robot
Number Parameter Comments
1 kg*m2
2 kg*m2/sec2
3 kg
4 kg*m2
5 kg
6 kg
7 kg*m2
8 kg*m2
9 m
10 m
11
12
13
14


Puma Robots

Dynamic Model 1

Puma robot

Description:

  • - Gravity constant
  • - Mass of the ith link
  • - length of the common normal between the ith and ith+1 joints
  • - offset along z axis between the ith and ith+1 joints
  • - The distance from the ith joint to the center of mass of the ith link
Number Parameter Comments
1
kg*m^2
2 kg*m^2
3 kg*m^2
4 kg*m^2
5 kg*m^2
6 kg*m^2
7 kg*m^2
8 kg*m^2
9 kg*m^2
10 kg*m^2
11 kg*m^2
12 kg*m^2
13 kg*m^2
14 kg*m^2
15 kg*m^2
16 kg*m^2
17 kg*m^2
18 kg*m^2
19 kg*m^2
20 kg*m^2
21 kg*m^2
22 kg*m^2
23 kg*m^2

Dynamic Model 2 - Gravity

This dynamic model is for cases where the robot moves very slowly.
In such cases, the accelerations and velocities of the joints of the robot have little effect on the joints torques. The joints torques are mainly affected by gravity and friction.
This model includes only the gravity and friction part of the PUMA robot dynamic model.

Number Parameter Comments
1 kg*m^2/s^2
2 kg*m^2/s^2
3 kg*m^2/s^2
4 kg*m^2/s^2

Galileo Spherical Robots (GSR)

Dynamic Model 1

Galileo robot



Number Parameter Comments
1 mP Payload mass [kg]
2 mB Balance mass [kg]
3 TP Payload mass center distance from the flange [mm]
4 TB Balance mass center distance from the (0,0) [mm]
5 IR Inertia of the payload around roll [kg*m2