Axis Setup Procedure

From SoftMC-Wiki
Revision as of 13:22, 17 August 2014 by Lisa (talk | contribs) (SETUP.PRG)
Jump to: navigation, search

Introduction

This series of slides will explain how to create and set an axis in the softMC controller. For that you will need:

  • Running softMC (either a real, or virtual)
  • User interface (Control.Studio)

Step 1: Declare Axis

In the first line of CONFIG.PRG file write the number of axes that will be in use:

Sys.Naxes = <number>
…
Program
…
End Program


Send this file to MC and run it by issuing these two lines from terminal window:

send config.prg
reset all

Now you have your axes defined, it is easily to check issuing this command from terminal window:

->?axislist
A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17

Step 2: Setting Meaningful Axis Name

System default axis names are not very user friendly (a1,a2,a3, etc.). It is a good practice to give them more meaningful names. This is done in CONFIG.PRG file only, by assigning a new name to each axis (no double-quotes) to <axis>.AxisName property.

Sys.Naxes = <number>
…
Program
	a1.AxisName = Xaxis
	a2.AxisName = Lift
…
End Program

Step 3: Preparing General Axis Setup

To set up system axes, a setup program must be prepared. Let’s call it SETUP.PRG.</br> It is important to know:

  • To access (write to) an axis property, the axis needs to be attached.
  • For some properties, the axis needs to be disabled

SETUP.PRG

Program
	Call SetAxis(a1)
	Call SetAxis(a2)	
	…
End Program

Sub SetAxis(ax as generic  axis)
With ax
	Attach
		En = 0
		…
		<stuff goes here>
		…
	Detach
End With
End Sub

Step 4: Position Units Definition

GearMotor.png

<axis>.PositionFactor defines the position units that will be used in all position variables of the specified axis (pcmd, pfb, etc.). It consists of:

  • Motor encoder resolution seen through the motion-bus (See EtherCAT, SERCOS, CanOPEN). How many counts are there in one motor revolution - stored in pos_units global variable (for each axis differently).
  • Gear ratio (M:N) and/or the pitch of the linear screw (mm/rev).
  • Rotary axes:
For position in degrees PositionFactor is:PFAC = Pos_Units *(M/N)/360
  • Linear axes:
For position in milli-meters PositionFactor is:PFAC = Pos_Units)/MPITCH
LinMotor.png

See Motion Bus setup for pos_units and MPITCH setup

Step#5: Moving Direction

Positive direction of drive's position increments does not have to match the desired positive direction of user axis (Upwards, Left-Right, Counterclockwise). Therefore <axis>.direction flag is to be used:

	<axis>.Direction = {1|-1}


Value of -1 indicates direction inversion.

Step#6: Velocity, Acceleration, Jerk units

Velocity units do not have to match position units (same for acceleration, jerk). User is free to select his/hers own units. For all the derivative units (velocity, acceleration, jerk) the default time scale is in milli-seconds, therefore scaling is needed.

To use position units per second for velocity one needs to define:

   <axis>.VelocityFactor = <axis>.PositionFactor/1000

In this case if the user set the position in mm the velocity will be in mm/sec

To define velocity in RPM of the motor:

    <axis>.VelocityFactor = Pos_Units /1000/60

For acceleration and jerk units is the same, their default values are expressed in velocity and acceleration units per milli-seconds. So in order to set them per seconds one needs to set them as:

    <axis>.AccelerationFactor = <axis>. VelocityFactor /1000
    <axis>.JerkFactor        = <axis>. AccelerationFactor /1000


Step#7:Units summary

Position, velocity, acceleration and jerk units are set by:

 <axis>.PositionFactor = …
 <axis>.Direction = …
 <axis>.VelocityFactor = ..
 <axis>.AccelerationFactor = ..
 <axis>.JerkFactor = …

Step#8:Position Limits

Setting position range of an axis. Setting max position:

<axis>.Pmax = … and enabling /disabling it: <axis>.PmaxEn = {0|1}

Setting min position:

<axis>.Pmin = … and enabling /disabling it: <axis>.PminEn = {0|1}

Setting the axis type:

<axis>.AxisType = 0 ‘ For linear axes
<axis>.AxisType = 1 ‘ For rotary axes

For rotary axes rollover can be defined: Enabling/Disabling it:

<axis>.PositionRollOverEnable  = {0|1}

Setting the whole range:

<axis>. PositionRollOver

Setting the low value:

<axis>. PositionRollOverMin

Not that if the enable flag is not set the correspondent value does not need to be set.

Axis-PLIM.PNG

Step#9: Motion Bus Units Setup

Depending on the type of Motion-Bus (EtherCAT, SERCOS, CanOpen) and drive used there are several parameters available for the user to be adjusted (not necessarily needed):

In case micro-interpolation is turned on in the drive, the velocity sent to drive must be properly scaled, this is done with (for counts per ms):

 <axis>.MotionBusVelocityScale = 0
 <axis>.MotionBusVelocityBase = 1

In case a limited drive’s position range is used (other then integer 32 bits):

 <axis>.CountMin = < drive min position value>
 <axis>.CountMax = < drive max position value>

Step#10: Motion Parameters

Motion parameters are grouped into velocity, acceleration and jerk values. They all have their max values for overall limitations, and their motion-default values that are used when motion is executed.

Motion default value is: <axis>.VelocityCruise

Velocity is set according to maximum axis physical limit (drives/motor capabilities and mechanical limitations):

 <axis>.Vmax 
Motion default values are: <axis>.Acceleration
<axis>.Deceleration

Acceleration is set according to maximum axis physical limits (Max drive/motor current, axis load) in user units:

 <axis>.Amax
 <axis>.Dmax
Motion default value is: <axis>.Jerk

Jerk is the third time-derivation of position, if smooth profiles are used it needs to be defined a good rule of thumb is to set J=BW*A, where J – jerk, A – acceleration, BW- control Bandwidth (Hz).

 <axis>.JerkMax

Step#11: Safety Parameters

Maximum allowed position error (PE). PE is defined as a difference between the position command and position feedback. Due to communication delay of the motion bus and processing time of the drive (micro-interpolation) position command of the several samples before the current is compared to the currently obtained position feedback of the drive:

 <axis>.PositionErrorMax – max allowed position error during in user units.
 <axis>.PositionErrorDelay – number of samples used for delay computation.

Velocity (Runaway) Protection, the feedback velocity of the motor is checked every sample (recommended to be set to 120% of the <axis>.VelocityMax)

 <axis>.VelocityOverSpeed

Sanity Threshold, as a final protection against unintentional jumps (recommended to be set to 1000% of <axis>.VelocityMax):

 <axis>.VelocitySafetyLimit

Torque Error – only if axis dynamic model is turned on

 <axis>.TorqueMaxError

Step#11: Smoothness

Different profile types are available from very smooth S-curves (Acceleration Trapeze, Sine Acceleration) to less smooth by faster Velocity Trapeze, to totally edgy profiles (Constant Velocity) by setting these two parameters:

<axis>.Smooth defined automatic (0-100) or manual smoothing (-1) <axis>.PrfType specifies profile more precisely (Velocity Trapeze, Acceleration Trapeze, Sine Acceleration)

Step#12: Axis Setup Complete Example - the SetAxis subroutine

sub SetRotAxis(ax as generic axis, byval minval as double , byval maxval as double)
  with ax
    attach
      En = 0
      AxisType = 1
      PositionFactor = pos_unit/360
      VelocityFactor = PositionFactor /1000
      AccelerationFactor = VelocityFactor /1000
      Jerkfactor = AccelerationFactor /1000
      VelocityMax = 1000
      AccelerationMax = 10000
      DecelerationMax= 10000
      JerkMax = 20*amax
      VelocityCruise = 0.5*VelocityMax
      Acceleration = AccelerationMax 
      Deceleration = DecelerationMax
      Jerk = JerkMax 
      PrfType = -1
      Smooth = -1
      VelocityOverspeed = 1.2*VelocityMax
      VelocitySafetyLimit = 10*VelocityMax
      PositionErrorDelay = 2
      PositionErrorMax  = 1
      PositionMax = maxval
      PositionMin = minval
      PositionMaxEn = 1
      PositionMinEn = 1
      PositionRolloverEnable = 0
   detach
  end with
end sub

Step#13: Motion-Bus EtherCat example

Position Units

First read the motor encoder resolution (MENCRES – SDO:0x20F1:0)
MENCRES = EC_SDO_READ(<addr>,0x20f1,0)

Then set (value of 1) the configured number of motor shaft revolutions and number of driving shaft revolutions. The gear ratio is calculated by the following:

Fieldbus CANopen Gear Motor Shaft Scaling (FBGMS – SDO0x2091:0)
Fieldbus CANopen Gear Driving Shaft Scaling (FBGDS – SDO0x2091:1)
gear ratio = FBGMS / FBGDS

Step#14: Extra - Dynamic model

Torque Scaling

<axis>.TorqueFactor – according to the Motor KT parameter

Limits

<axis>.TorqueMax – maximum motor torque

Dynamic Model Parameters

axis.DYNAMICMODEL[..] = <…>