Difference between revisions of "Dynamic Models"

From SoftMC-Wiki
Jump to: navigation, search
(Dynamic Model 2)
(Puma Robots)
Line 240: Line 240:
  
 
== Puma Robots ==
 
== Puma Robots ==
 +
=== Dynamic Model 1 ===
 +
[[File:puma.PNG|Puma robot|thumb]]
 +
 +
Description:
 +
:* <math> g </math> - The gravity constant
 +
:* <math> m_{i} </math> - The mass of the i<sup>th</sup> link
 +
:* <math> a_{i} </math> - The length of the i<sup>th</sup> link
 +
:* <math> l_{i} </math> - The distance from the i<sup>th</sup> joint to the center of mass of the i<sup>th</sup> link
 +
 +
{|border="1" width="80%"
 +
!width="100"|Number
 +
!width="250"|Parameter
 +
!Comments
 +
|-
 +
|1
 +
|<math>I_{1} = I_{1,zz}+m_{1}*l_{1,y}^2 +m_{2}*d_{2}^2+(m_{4}+m_{5}+m_{6})*a_{3}^2+m_{2}*l_{2,z}^2+</math> <br> <math>(m_{3}+m_{4}+m_{5}+m_{6})*(d_{2}+d_{3})^2+I_{2,xx}+I_{3,yy}+2*m_{2}*d_{2}*l_{2,z}+m_{2}*l_{2,y}^2+m_{3}*l_{3,z}^2+2*m_{3}*(d_{2}+d_{3})*l_{3,z}+I_{4,zz}+I_{4,yy}+I_{6,zz}</math>
 +
|kg/m^2
 +
|-
 +
|2
 +
|<math>g(m_{3}l_{3,y}+l_{3}(m_{4}+m_{5}+m_{6}))</math>
 +
|kg*m^2/s^2
 +
|-
 +
|3
 +
|<math>g(m_{3}l_{3,y}+l_{3}(m_{4}+m_{5}+m_{6}))</math>
 +
|kg*m^2/s^2
 +
|-
 +
|4
 +
|<math>gl_{56}(m_{5}+m_{6})</math>
 +
|kg*m^2/s^2
 +
 +
|}
 +
 +
 
=== Dynamic Model 2 - Gravity ===
 
=== Dynamic Model 2 - Gravity ===
 
[[File:puma.PNG|Puma robot|thumb]]
 
[[File:puma.PNG|Puma robot|thumb]]

Revision as of 09:49, 16 October 2017

This page gives an overview over all implemented dynamic models.

General considerations

  • Friction is handled on axis basis. The parameters for friction are set for each axis separately.
  • Torque (Force) is always expressed in [Nm] ([N])

Rotational Axes

Dynamic Model 1 - simple rotary axis

Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
Model equation


Dynamic Model 2 - horizontal crank-arm axis

Horizontal crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
Model equation


Dynamic Model 3 - vertical crank-arm axis

Vertical crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
3 Mass (without payload) * Gravity * Distance to center of mass
4 Gravity * Distance to Payload
Model equation

Linear Axes

Dynamic Model 1 - horizontal axis

Horizontal linear axis
Number Parameter Comments
1 Total mass of the moved part.
Model equation


Dynamic Model 2 - vertical or tilted axis

Vertical linear axis
Number Parameter Comments
1 Total mass of the moved part.
2 Constant force due to gravity.
3 Gravity coefficient used to consider payload mass. (g = 9.80665)
Model equation


Traverse Arm Robots

Dynamic Model 1

Traverse Arm robot
Number Parameter Comments
1
2
3
4
5
6
7


Scara Robots

Dynamic Model 1

scara robot
Number Parameter Comments
1
2
3
4
5
6
7
8

Delta Robots

Dynamic Model 1

Delta robot
Number Parameter Comments
1 kg*m2
2 kg*m2/sec2
3 kg
4 kg*m2
5 kg
6 kg
7 kg*m2
8 kg*m2
9 m
10 m
11
12
13
14


Puma Robots

Dynamic Model 1

Puma robot

Description:

  • - The gravity constant
  • - The mass of the ith link
  • - The length of the ith link
  • - The distance from the ith joint to the center of mass of the ith link
Number Parameter Comments
1
kg/m^2
2 kg*m^2/s^2
3 kg*m^2/s^2
4 kg*m^2/s^2


Dynamic Model 2 - Gravity

Puma robot

Description:

  • - The gravity constant
  • - The mass of the ith link
  • - The length of the ith link
  • - The distance from the ith joint to the center of mass of the ith link
Number Parameter Comments
1 kg*m^2/s^2
2 kg*m^2/s^2
3 kg*m^2/s^2
4 kg*m^2/s^2

Galileo Spherical Robots (GSR)

Dynamic Model 1

Galileo robot



Number Parameter Comments
1 mP Payload mass [kg]
2 mB Balance mass [kg]
3 TP Payload mass center distance from the flange [mm]
4 TB Balance mass center distance from the (0,0) [mm]
5 IR Inertia of the payload around roll [kg*m2