Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"

From SoftMC-Wiki
Jump to: navigation, search
(Created page with "= Stopping (or any other) path from the given initial conditions = == Given == Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> == Path == …")
 
(Stopping (or any other) path from the given initial conditions)
Line 3: Line 3:
 
== Given ==
 
== Given ==
  
Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math>
+
Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math>  
  
 
== Path ==
 
== Path ==
  
<math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math>
+
<math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math>  where <math>\alpha(0) = 0</math>
 +
 
 +
with: <br>
 +
<math>|s| = |n| </math><br><br>
 +
<math>s \cdot n = 0 </math><br><br>
 +
<math>p_0 = c + s </math><br><br>
 +
 
 +
assuming <math>|s| = |n| = R </math> and <math>R=1</math>
 +
 
 +
we get:<br>
 +
<math> \dot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \dot \alpha(t)</math> <br><br>
 +
<math> \dot p_0 =  n \cdot \dot \alpha(t)</math> <br><br>
 +
assuming (positive alpha velocity):<br>
 +
<math>\dot \alpha(0) = |\dot p|</math> <br><br>
 +
 
 +
 
 +
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br>
 +
<math> \ddot p_0 =  n \cdot  \cdot \ddot \alpha(t) - s \cdot \dot \alpha^2(t)</math> <br><br>

Revision as of 11:38, 4 June 2012

Stopping (or any other) path from the given initial conditions

Given

Initial position, velocity and acceleration

Path

where

with:






assuming and

we get:




assuming (positive alpha velocity):