Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"
(Created page with "= Stopping (or any other) path from the given initial conditions = == Given == Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> == Path == …") |
(→Stopping (or any other) path from the given initial conditions) |
||
Line 3: | Line 3: | ||
== Given == | == Given == | ||
− | Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> | + | Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> |
== Path == | == Path == | ||
− | <math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math> | + | <math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math> where <math>\alpha(0) = 0</math> |
+ | |||
+ | with: <br> | ||
+ | <math>|s| = |n| </math><br><br> | ||
+ | <math>s \cdot n = 0 </math><br><br> | ||
+ | <math>p_0 = c + s </math><br><br> | ||
+ | |||
+ | assuming <math>|s| = |n| = R </math> and <math>R=1</math> | ||
+ | |||
+ | we get:<br> | ||
+ | <math> \dot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \dot \alpha(t)</math> <br><br> | ||
+ | <math> \dot p_0 = n \cdot \dot \alpha(t)</math> <br><br> | ||
+ | assuming (positive alpha velocity):<br> | ||
+ | <math>\dot \alpha(0) = |\dot p|</math> <br><br> | ||
+ | |||
+ | |||
+ | <math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br> | ||
+ | <math> \ddot p_0 = n \cdot \cdot \ddot \alpha(t) - s \cdot \dot \alpha^2(t)</math> <br><br> |
Revision as of 11:38, 4 June 2012
Stopping (or any other) path from the given initial conditions
Given
Initial position, velocity and acceleration
Path
where
with:
assuming and
we get:
assuming (positive alpha velocity):