Difference between revisions of "Dynamic Models"

From SoftMC-Wiki
Jump to: navigation, search
(Dynamic Model 2 - Gravity)
(Dynamic Model 1: change kg/m^2 to kg*m^2)
Line 257: Line 257:
 
|1
 
|1
 
|<math>I_{1} = I_{1,zz}+m_{1}*l_{1,y}^2 +m_{2}*d_{2}^2+(m_{4}+m_{5}+m_{6})*a_{3}^2+m_{2}*l_{2,z}^2+</math> <br> <math>(m_{3}+m_{4}+m_{5}+m_{6})*(d_{2}+d_{3})^2+I_{2,xx}+I_{3,yy}+2*m_{2}*d_{2}*l_{2,z}+m_{2}*l_{2,y}^2+m_{3}*l_{3,z}^2+2*m_{3}*(d_{2}+d_{3})*l_{3,z}+I_{4,zz}+I_{4,yy}+I_{6,zz}</math>
 
|<math>I_{1} = I_{1,zz}+m_{1}*l_{1,y}^2 +m_{2}*d_{2}^2+(m_{4}+m_{5}+m_{6})*a_{3}^2+m_{2}*l_{2,z}^2+</math> <br> <math>(m_{3}+m_{4}+m_{5}+m_{6})*(d_{2}+d_{3})^2+I_{2,xx}+I_{3,yy}+2*m_{2}*d_{2}*l_{2,z}+m_{2}*l_{2,y}^2+m_{3}*l_{3,z}^2+2*m_{3}*(d_{2}+d_{3})*l_{3,z}+I_{4,zz}+I_{4,yy}+I_{6,zz}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|2
 
|2
 
|<math>I_{2} = I_{2,zz}+m_{2}*(l_{2,x}^2+l_{2,y}^2)+(m_{3}+m_{4}+m_{5}+m_{6}*a_{2}^2</math>
 
|<math>I_{2} = I_{2,zz}+m_{2}*(l_{2,x}^2+l_{2,y}^2)+(m_{3}+m_{4}+m_{5}+m_{6}*a_{2}^2</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|3
 
|3
 
|<math>I_{3} = -I_{2,xx}+I_{2,yy}+(m_{3}+m_{4}+m_{5}+m_{6})*a_{2}^2+m_{2}*l_{2,x}^2-m_{2}*l_{2,y}^2</math>
 
|<math>I_{3} = -I_{2,xx}+I_{2,yy}+(m_{3}+m_{4}+m_{5}+m_{6})*a_{2}^2+m_{2}*l_{2,x}^2-m_{2}*l_{2,y}^2</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|4
 
|4
 
|<math>I_{4} = m_{2}*l_{2,x}*(d_{2}+l_{2,z})+m_{3}*a_{2}*l_{3,z}+(m_{3}+m_{4}+m_{5}+m_{6})*a_{2}*(d_{2}+d_{3})</math>
 
|<math>I_{4} = m_{2}*l_{2,x}*(d_{2}+l_{2,z})+m_{3}*a_{2}*l_{3,z}+(m_{3}+m_{4}+m_{5}+m_{6})*a_{2}*(d_{2}+d_{3})</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|5
 
|5
 
|<math>I_{5} = -m_{3}*a_{2}*l_{3,y}+(m_{4}+m_{5}+m_{6})*a_{2}*d_{4}+m_{4}*a_{2}*l_{4,z}</math>
 
|<math>I_{5} = -m_{3}*a_{2}*l_{3,y}+(m_{4}+m_{5}+m_{6})*a_{2}*d_{4}+m_{4}*a_{2}*l_{4,z}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|6
 
|6
 
|<math>I_{6} = I_{3,zz}+m_{3}*l_{3,y}^2+m_{4}*a_{3}^2+m_{4}*(d_{4}+l_{4,z})^2+I_{4,yy}+m_{5}*a_{3}^2+m_{5}*d_{4}^2+I_{5,zz}+m_{6}*a_{3}^2+m_{6}*d_{4}^2+m_{6}*l_{6,z}^2+I_{6,xx}</math>
 
|<math>I_{6} = I_{3,zz}+m_{3}*l_{3,y}^2+m_{4}*a_{3}^2+m_{4}*(d_{4}+l_{4,z})^2+I_{4,yy}+m_{5}*a_{3}^2+m_{5}*d_{4}^2+I_{5,zz}+m_{6}*a_{3}^2+m_{6}*d_{4}^2+m_{6}*l_{6,z}^2+I_{6,xx}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|7
 
|7
 
|<math>I_{7} = m_{3}*l_{3,y}^2+I_{3,xx}-I_{3,yy}+m_{4}*l_{4,z}^2+2*m_{4}*d_{4}*l_{4,z}+(m_{4}+m_{5}+m_{6})*(d_{4}^2-a_{3}^2)+I_{4,yy}-I_{4,yy}+I_{5,zz}-I_{5,yy}+m_{6}*l_{6,z}^2-I_{6,zz}+I_{6,xx}</math>
 
|<math>I_{7} = m_{3}*l_{3,y}^2+I_{3,xx}-I_{3,yy}+m_{4}*l_{4,z}^2+2*m_{4}*d_{4}*l_{4,z}+(m_{4}+m_{5}+m_{6})*(d_{4}^2-a_{3}^2)+I_{4,yy}-I_{4,yy}+I_{5,zz}-I_{5,yy}+m_{6}*l_{6,z}^2-I_{6,zz}+I_{6,xx}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|8
 
|8
 
|<math>I_{8} = -m_{4}*(d_{2}+d_{3})*(d_{4}+l_{4,z})-(m_{3}+m_{6})*(d_{2}+d_{3})*d_{4}+m_{3}*l_{3,y}*l_{3,z}+m_{3}*(d_{2}+d_{3})*l_{3,y}</math>
 
|<math>I_{8} = -m_{4}*(d_{2}+d_{3})*(d_{4}+l_{4,z})-(m_{3}+m_{6})*(d_{2}+d_{3})*d_{4}+m_{3}*l_{3,y}*l_{3,z}+m_{3}*(d_{2}+d_{3})*l_{3,y}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|9
 
|9
 
|<math>I_{9} = m_{2}*l_{2,y}*(d_{2}+l_{2,z})</math>
 
|<math>I_{9} = m_{2}*l_{2,y}*(d_{2}+l_{2,z})</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|10
 
|10
 
|<math>I_{10} = 2*m_{4}*a_{5}*l_{4,z}+2*(m_{4}+m_{5}+m_{6})*a_{3}*d_{4}</math>
 
|<math>I_{10} = 2*m_{4}*a_{5}*l_{4,z}+2*(m_{4}+m_{5}+m_{6})*a_{3}*d_{4}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|11
 
|11
 
|<math>I_{11} = -2*m_{2}*l_{2,x}*l_{2,y}</math>
 
|<math>I_{11} = -2*m_{2}*l_{2,x}*l_{2,y}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|12
 
|12
 
|<math>I_{12} = (m_{4}+m_{5}+m_{6})*a_{2}*a_{3}</math>
 
|<math>I_{12} = (m_{4}+m_{5}+m_{6})*a_{2}*a_{3}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|13
 
|13
 
|<math>I_{13} = (m_{4}+m_{5}+m_{6})*a_{3}*(d_{2}+d_{3})</math>
 
|<math>I_{13} = (m_{4}+m_{5}+m_{6})*a_{3}*(d_{2}+d_{3})</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|14
 
|14
 
|<math>I_{14} = I_{4,zz}+I_{5,yy}+I_{6,zz}</math>
 
|<math>I_{14} = I_{4,zz}+I_{5,yy}+I_{6,zz}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|15
 
|15
 
|<math>I_{15} = m_{6}*d_{4}*l_{6,z}</math>
 
|<math>I_{15} = m_{6}*d_{4}*l_{6,z}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|16
 
|16
 
|<math>I_{16} = m_{6}*a_{2}*l_{6,z}</math>
 
|<math>I_{16} = m_{6}*a_{2}*l_{6,z}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|17
 
|17
 
|<math>I_{17} = I_{5,zz}+I_{6,xx}+m_{6}*l_{6,z}^2</math>
 
|<math>I_{17} = I_{5,zz}+I_{6,xx}+m_{6}*l_{6,z}^2</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|18
 
|18
 
|<math>I_{18} = m_{6}*(d_{2}+d_{3})*l_{6,z}</math>
 
|<math>I_{18} = m_{6}*(d_{2}+d_{3})*l_{6,z}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|19
 
|19
 
|<math>I_{19} = I_{4,yy}-I_{4,xx}+I_{5,zz}-i_{5,yy}+m_{6}*l_{6,z}^2+I_{6,xx}-I_{6,zz}</math>
 
|<math>I_{19} = I_{4,yy}-I_{4,xx}+I_{5,zz}-i_{5,yy}+m_{6}*l_{6,z}^2+I_{6,xx}-I_{6,zz}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|20
 
|20
 
|<math>I_{20} = I_{5,yy}-I_{5,xx}-m_{6}*l_{6,z}^2+I_{6,zz}-I_{6,xx}</math>
 
|<math>I_{20} = I_{5,yy}-I_{5,xx}-m_{6}*l_{6,z}^2+I_{6,zz}-I_{6,xx}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|21
 
|21
 
|<math>I_{21} = I_{4,xx}-I_{4,yy}+I_{5,xx}-I_{5,zz}</math>
 
|<math>I_{21} = I_{4,xx}-I_{4,yy}+I_{5,xx}-I_{5,zz}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|22
 
|22
 
|<math>I_{22} = m_{6}*a_{3}*l_{6,z}</math>
 
|<math>I_{22} = m_{6}*a_{3}*l_{6,z}</math>
|kg/m^2
+
|kg*m^2
 
|-
 
|-
 
|23
 
|23
 
|<math>I_{23} = I_{6,zz}</math>
 
|<math>I_{23} = I_{6,zz}</math>
|kg/m^2
+
|kg*m^2
 
|}
 
|}
  

Revision as of 13:13, 23 April 2018

This page gives an overview over all implemented dynamic models.

General considerations

  • Friction is handled on axis basis. The parameters for friction are set for each axis separately.
  • Torque (Force) is always expressed in [Nm] ([N])

Rotational Axes

Dynamic Model 1 - simple rotary axis

Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
Model equation


Dynamic Model 2 - horizontal crank-arm axis

Horizontal crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
Model equation


Dynamic Model 3 - vertical crank-arm axis

Vertical crank-arm axis
Number Parameter Comments
1 Total moment of inertia around the rotation axis of the moved part
2 Square of length of crank arm (axis to payload)
3 Mass (without payload) * Gravity * Distance to center of mass
4 Gravity * Distance to Payload
Model equation

Linear Axes

Dynamic Model 1 - horizontal axis

Horizontal linear axis
Number Parameter Comments
1 Total mass of the moved part.
Model equation


Dynamic Model 2 - vertical or tilted axis

Vertical linear axis
Number Parameter Comments
1 Total mass of the moved part.
2 Constant force due to gravity.
3 Gravity coefficient used to consider payload mass. (g = 9.80665)
Model equation


Traverse Arm Robots

Dynamic Model 1

Traverse Arm robot
Number Parameter Comments
1
2
3
4
5
6
7


Scara Robots

Dynamic Model 1

scara robot
Number Parameter Comments
1
2
3
4
5
6
7
8

Delta Robots

Dynamic Model 1

Delta robot
Number Parameter Comments
1 kg*m2
2 kg*m2/sec2
3 kg
4 kg*m2
5 kg
6 kg
7 kg*m2
8 kg*m2
9 m
10 m
11
12
13
14


Puma Robots

Dynamic Model 1

Puma robot

Description:

  • - Gravity constant
  • - Mass of the ith link
  • - length of the common normal between the ith and ith+1 joints
  • - offset along z axis between the ith and ith+1 joints
  • - The distance from the ith joint to the center of mass of the ith link
Number Parameter Comments
1
kg*m^2
2 kg*m^2
3 kg*m^2
4 kg*m^2
5 kg*m^2
6 kg*m^2
7 kg*m^2
8 kg*m^2
9 kg*m^2
10 kg*m^2
11 kg*m^2
12 kg*m^2
13 kg*m^2
14 kg*m^2
15 kg*m^2
16 kg*m^2
17 kg*m^2
18 kg*m^2
19 kg*m^2
20 kg*m^2
21 kg*m^2
22 kg*m^2
23 kg*m^2

Dynamic Model 2 - Gravity

Number Parameter Comments
1 kg*m^2/s^2
2 kg*m^2/s^2
3 kg*m^2/s^2
4 kg*m^2/s^2

Galileo Spherical Robots (GSR)

Dynamic Model 1

Galileo robot



Number Parameter Comments
1 mP Payload mass [kg]
2 mB Balance mass [kg]
3 TP Payload mass center distance from the flange [mm]
4 TB Balance mass center distance from the (0,0) [mm]
5 IR Inertia of the payload around roll [kg*m2