|
|
Line 259: |
Line 259: |
| |- | | |- |
| |2 | | |2 |
− | |<math>g(m_{3}l_{3,y}+l_{3}(m_{4}+m_{5}+m_{6}))</math> | + | |<math>I_{2} = I_{2,zz}+m_{2}*(l_{2,x}^2+l_{2,y}^2)+(m_{3}+m_{4}+m_{5}+m_{6}*a_{2}^2</math> |
− | |kg*m^2/s^2 | + | |kg/m^2 |
| |- | | |- |
| |3 | | |3 |
− | |<math>g(m_{3}l_{3,y}+l_{3}(m_{4}+m_{5}+m_{6}))</math> | + | |<math>I_{3} = -I_{2,xx}+I_{2,yy}+(m_{3}+m_{4}+m_{5}+m_{6})*a{2}^2+m_{2}*l_{2,x}^2-m_{2}*l_{2,y}^2</math> |
− | |kg*m^2/s^2 | + | |kg/m^2 |
| |- | | |- |
| |4 | | |4 |
− | |<math>gl_{56}(m_{5}+m_{6})</math> | + | |<math>I_{4} = m_{2}*l_{2,x}*(d_{2}+l_{2,z})+m_{3}*a_{2}*l_{3,z}+(m_{3}+m_{4}+m_{5}+m_{6})*a_{2}*(d_{2}+d_{3})</math> |
− | |kg*m^2/s^2 | + | |kg/m^2 |
| | | |
| |} | | |} |
− |
| |
| | | |
| === Dynamic Model 2 - Gravity === | | === Dynamic Model 2 - Gravity === |
Revision as of 10:18, 16 October 2017
This page gives an overview over all implemented dynamic models.
General considerations
- Friction is handled on axis basis. The parameters for friction are set for each axis separately.
- Torque (Force) is always expressed in [Nm] ([N])
Rotational Axes
Dynamic Model 1 - simple rotary axis
Number
|
Parameter
|
Comments
|
1
|
|
Total moment of inertia around the rotation axis of the moved part
|
- Model equation
-
Dynamic Model 2 - horizontal crank-arm axis
Horizontal crank-arm axis
Number
|
Parameter
|
Comments
|
1
|
|
Total moment of inertia around the rotation axis of the moved part
|
2
|
|
Square of length of crank arm (axis to payload)
|
- Model equation
-
Dynamic Model 3 - vertical crank-arm axis
Number
|
Parameter
|
Comments
|
1
|
|
Total moment of inertia around the rotation axis of the moved part
|
2
|
|
Square of length of crank arm (axis to payload)
|
3
|
|
Mass (without payload) * Gravity * Distance to center of mass
|
4
|
|
Gravity * Distance to Payload
|
- Model equation
-
Linear Axes
Dynamic Model 1 - horizontal axis
Number
|
Parameter
|
Comments
|
1
|
|
Total mass of the moved part.
|
- Model equation
-
Dynamic Model 2 - vertical or tilted axis
Number
|
Parameter
|
Comments
|
1
|
|
Total mass of the moved part.
|
2
|
|
Constant force due to gravity.
|
3
|
|
Gravity coefficient used to consider payload mass. (g = 9.80665)
|
- Model equation
-
Traverse Arm Robots
Dynamic Model 1
Number
|
Parameter
|
Comments
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
7
|
|
Scara Robots
Dynamic Model 1
Number
|
Parameter
|
Comments
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
7
|
|
8
|
|
Delta Robots
Dynamic Model 1
Number
|
Parameter
|
Comments
|
1
|
|
kg*m2
|
2
|
|
kg*m2/sec2
|
3
|
|
kg
|
4
|
|
kg*m2
|
5
|
|
kg
|
6
|
|
kg
|
7
|
|
kg*m2
|
8
|
|
kg*m2
|
9
|
|
m
|
10
|
|
m
|
11
|
|
12
|
|
13
|
|
14
|
|
Puma Robots
Dynamic Model 1
Description:
- - The gravity constant
- - The mass of the ith link
- - The length of the ith link
- - The distance from the ith joint to the center of mass of the ith link
Number
|
Parameter
|
Comments
|
1
|
|
kg/m^2
|
2
|
|
kg/m^2
|
3
|
|
kg/m^2
|
4
|
|
kg/m^2
|
Dynamic Model 2 - Gravity
Description:
- - The gravity constant
- - The mass of the ith link
- - The length of the ith link
- - The distance from the ith joint to the center of mass of the ith link
Number
|
Parameter
|
Comments
|
1
|
|
kg*m^2/s^2
|
2
|
|
kg*m^2/s^2
|
3
|
|
kg*m^2/s^2
|
4
|
|
kg*m^2/s^2
|
Galileo Spherical Robots (GSR)
Dynamic Model 1
Number
|
Parameter
|
Comments
|
1
|
mP
|
Payload mass [kg]
|
2
|
mB
|
Balance mass [kg]
|
3
|
TP
|
Payload mass center distance from the flange [mm]
|
4
|
TB
|
Balance mass center distance from the (0,0) [mm]
|
5
|
IR
|
Inertia of the payload around roll [kg*m2
|