Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"

From SoftMC-Wiki
Jump to: navigation, search
(Stopping (or any other) path from the given initial conditions)
(Path)
Line 21: Line 21:
 
assuming (positive alpha velocity):<br>
 
assuming (positive alpha velocity):<br>
 
<math>\dot \alpha(0) = |\dot p|</math> <br><br>
 
<math>\dot \alpha(0) = |\dot p|</math> <br><br>
 +
and<br>
  
 +
<math> n = \frac {\dot p} {|\dot p|}</math> <br><br>
  
 
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br>
 
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br>
<math> \ddot p_0 =  n \cdot  \cdot \ddot \alpha(t) - s \cdot \dot \alpha^2(t)</math> <br><br>
+
<math> \ddot p_0 =  n \cdot \ddot \alpha(0) - s \cdot \dot \alpha^2(0)</math> <br><br>
 +
multiplying above by n:<br>
 +
<math> \ddot p_0 \cdot n=  \ddot \alpha(t) </math> <br><br>
 +
and <br>
 +
<math>s =  \frac{\ddot p_0 - n \cdot \ddot \alpha(0)}  {\dot \alpha^2(0) }</math>

Revision as of 11:46, 4 June 2012

Stopping (or any other) path from the given initial conditions

Given

Initial position, velocity and acceleration

Path

where

with:






assuming and

we get:




assuming (positive alpha velocity):


and







multiplying above by n:


and