Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"
(→Stopping (or any other) path from the given initial conditions) |
(→Path) |
||
Line 21: | Line 21: | ||
assuming (positive alpha velocity):<br> | assuming (positive alpha velocity):<br> | ||
<math>\dot \alpha(0) = |\dot p|</math> <br><br> | <math>\dot \alpha(0) = |\dot p|</math> <br><br> | ||
+ | and<br> | ||
+ | <math> n = \frac {\dot p} {|\dot p|}</math> <br><br> | ||
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br> | <math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br> | ||
− | <math> \ddot p_0 = n | + | <math> \ddot p_0 = n \cdot \ddot \alpha(0) - s \cdot \dot \alpha^2(0)</math> <br><br> |
+ | multiplying above by n:<br> | ||
+ | <math> \ddot p_0 \cdot n= \ddot \alpha(t) </math> <br><br> | ||
+ | and <br> | ||
+ | <math>s = \frac{\ddot p_0 - n \cdot \ddot \alpha(0)} {\dot \alpha^2(0) }</math> |
Revision as of 11:46, 4 June 2012
Stopping (or any other) path from the given initial conditions
Given
Initial position, velocity and acceleration
Path
where
with:
assuming and
we get:
assuming (positive alpha velocity):
and
multiplying above by n:
and