Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"

From SoftMC-Wiki
Jump to: navigation, search
(Stopping (or any other) path from the given initial conditions)
(Path)
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
== Path ==
 
== Path ==
  
<math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math>  where <math>\alpha(0) = 0</math>
+
<math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math>  where <math>\alpha(0) = 0</math> <div align="right">(0)</div><br>
 
 
 
with: <br>
 
with: <br>
<math>|s| = |n| </math><br><br>
+
<math>|s| = |n| </math>   <div align="right">(1)</div><br>
<math>s \cdot n = 0 </math><br><br>
+
<math>s \cdot n = 0 </math><div align="right">(2)</div><br>
<math>p_0 = c + s </math><br><br>
+
<math>p_0 = c + s </math><div align="right">(3)</div><br>
 
+
assuming <math>|s| = |n| = R </math> and <math>R=1</math><div align="right">(3)</div><br>
assuming <math>|s| = |n| = R </math> and <math>R=1</math>
 
 
 
 
we get:<br>
 
we get:<br>
<math> \dot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \dot \alpha(t)</math> <br><br>
+
<math> \dot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \dot \alpha(t)</math> <div align="right">(4)</div><br>
<math> \dot p_0 =  n \cdot \dot \alpha(t)</math> <br><br>
+
<math> \dot p_0 =  n \cdot \dot \alpha(t)</math> <div align="right">(5)</div><br>
 
assuming (positive alpha velocity):<br>
 
assuming (positive alpha velocity):<br>
<math>\dot \alpha(0) = |\dot p|</math> <br><br>
+
<math>\dot \alpha(0) = |\dot p|</math> <div align="right">(6)</div><br>
 
+
and from(5)<br>
 
+
<math> n = \frac {\dot p} {|\dot p|}</math> <div align="right">(7)</div><br>
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <br><br>
+
derivating further:<br>
<math> \ddot p_0 =  n \cdot \cdot \ddot \alpha(t) - s \cdot \dot \alpha^2(t)</math> <br><br>
+
<math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <div align="right">(8)</div><br>
 +
<math> \ddot p_0 =  n \cdot \ddot \alpha(0) - s \cdot \dot \alpha^2(0)</math> <div align="right">(9)</div><br>
 +
multiplying above (9) by n:<br>
 +
<math> \ddot p_0 \cdot n=  \ddot \alpha(t) </math> <div align="right">(10)</div><br>
 +
and from (9):<br>
 +
<math>s =  \frac{\ddot p_0 - n \cdot \ddot \alpha(0)}  {\dot \alpha^2(0) }</math><div align="right">(11)</div><br>

Latest revision as of 12:20, 4 June 2012

Stopping (or any other) path from the given initial conditions

Given

Initial position, velocity and acceleration

Path

where
(0)

with:

(1)

(2)

(3)

assuming and
(3)

we get:

(4)

(5)

assuming (positive alpha velocity):

(6)

and from(5)

(7)

derivating further:

(8)

(9)

multiplying above (9) by n:

(10)

and from (9):

(11)