Difference between revisions of "AXY:Element Coordination/Multi Dimensional Tracking Algorithm (Position)/Theoretical Background"
(Created page with "= Stopping (or any other) path from the given initial conditions = == Given == Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> == Path == …") |
(→Path) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
== Given == | == Given == | ||
− | Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> | + | Initial position, velocity and acceleration <math>(p_0,\dot p_0 , \ddot p_0)</math> |
== Path == | == Path == | ||
− | <math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math> | + | <math> p = c + s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) </math> where <math>\alpha(0) = 0</math> <div align="right">(0)</div><br> |
+ | with: <br> | ||
+ | <math>|s| = |n| </math> <div align="right">(1)</div><br> | ||
+ | <math>s \cdot n = 0 </math><div align="right">(2)</div><br> | ||
+ | <math>p_0 = c + s </math><div align="right">(3)</div><br> | ||
+ | assuming <math>|s| = |n| = R </math> and <math>R=1</math><div align="right">(3)</div><br> | ||
+ | we get:<br> | ||
+ | <math> \dot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \dot \alpha(t)</math> <div align="right">(4)</div><br> | ||
+ | <math> \dot p_0 = n \cdot \dot \alpha(t)</math> <div align="right">(5)</div><br> | ||
+ | assuming (positive alpha velocity):<br> | ||
+ | <math>\dot \alpha(0) = |\dot p|</math> <div align="right">(6)</div><br> | ||
+ | and from(5)<br> | ||
+ | <math> n = \frac {\dot p} {|\dot p|}</math> <div align="right">(7)</div><br> | ||
+ | derivating further:<br> | ||
+ | <math> \ddot p = (-s\cdot sin(\alpha(t)) + n\cdot cos(\alpha(t)) ) \cdot \ddot \alpha(t) - (s\cdot cos(\alpha(t)) + n\cdot sin(\alpha(t)) ) \cdot \dot \alpha^2(t)</math> <div align="right">(8)</div><br> | ||
+ | <math> \ddot p_0 = n \cdot \ddot \alpha(0) - s \cdot \dot \alpha^2(0)</math> <div align="right">(9)</div><br> | ||
+ | multiplying above (9) by n:<br> | ||
+ | <math> \ddot p_0 \cdot n= \ddot \alpha(t) </math> <div align="right">(10)</div><br> | ||
+ | and from (9):<br> | ||
+ | <math>s = \frac{\ddot p_0 - n \cdot \ddot \alpha(0)} {\dot \alpha^2(0) }</math><div align="right">(11)</div><br> |
Latest revision as of 12:20, 4 June 2012
Stopping (or any other) path from the given initial conditions
Given
Initial position, velocity and acceleration
Path
where(0)
with:
(1)
(2)
(3)
assuming and
(3)
we get:
(4)
(5)
assuming (positive alpha velocity):
(6)
and from(5)
(7)
derivating further:
(8)
(9)
multiplying above (9) by n:
(10)
and from (9):
(11)