
AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 1 of 22

Written By: Authorized By Authorization Date:

 1

Generic Points

TABLE OF CONTENTS

GENERIC POINTS ... 1

REVISION HISTORY .. 1

1.DECLARATION ... 2

2.CASTING ... 3

3.ASSIGNMENT ... 9

3.1 Initialization through assignment.. 9
3.2 Assignment after initialization .. 10

4. BINARY OPERATIONS ... 11

5. ASSISTING FUNCTIONS .. 13

5.1 ROBOTTYPE ... 13
5.2 ROBOTTYPE$... 14
5.3 NOOFCOORDINATES .. 14

6. FUNCTIONS AND SUBROUTINES .. 15

6.1 By-Value Parameters ... 15
6.2 By-Reference Parameters ... 17
6.3 Returned-Values .. 19

MOTION ISSUES: ... 21

7. TESTS ... 21

Revision History

Revision Number Description

 

Non-generic points Currently existing joint- and location-type points, with
predefined and unchangeable robot-types, determined
during point declaration.

Generic points Joint- and location-type points, with changeable robot-
types.

Lists of coordinates Constant joint- and location-type point values, without
robot-types. Appear as a list of double-type arguments,
separated by commas, within curly brackets. In
location-type lists, curly brackets are preceded by ‘#’.

Joint-type list: {<coordinate>, <coordinate>, …}

Location-type list: #{<coordinate>, <coordinate>, …}

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 2 of 22

Written By: Authorized By Authorization Date:

 2

1. Declaration

As in non-generic points, generic points also have two distinct and
types: joint and location. The type is determined during declaration and
cannot be changed afterwards.
However, unlike non-generic points, generic points are not linked to
specific robot-types during declaration. Therefore, robot-types of
generic points are not fixed, and can be changed several times
throughout application. As a result, generic points have no robot-types
in translation phase, and their current robot-types can be calculated
only during run-time, much like values of variables and handles of
generic axes and groups.
Declaration syntax of generic points was designed to be consistent with
declaration syntax of non-generic points:

Declaration of generic joints:

{Common Shared| Dim Shared| Dim} <name>{[size]…} As Generic Joint

Declaration of generic locations:

{Common Shared| Dim Shared| Dim} <name>{[size]…} As Generic Location

Declaration of generic joint and location fields:

Type <struct_name>

<name>{[size]…} As Generic joint

<name>{[size]…} As Generic Location

End Type

Immediately after declaration generic points have no robot-types and
zero size. Therefore, they cannot be used before initialization.
Initialization can be performed through casting (see section 2), or
through assignment of another point variable with a previously defined
robot-type (see section 3).

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 3 of 22

Written By: Authorized By Authorization Date:

 3

2. Casting

? CASTPOINT(<list_of_coordinates>, <robot_type_number>)

<joint_point> = CASTJOINT(<double_or_long_scalar>, <robot_type_number>)

<location_point>= CASTLOCATION(<double_or_long_scalar>, <robot_type_number>)

<joint_point> = CASTJOINT(<double_or_long_whole_array>, <robot_type_number>)

? CASTLOCATION(<double_or_long_whole_array>, <robot_type_number>)

- The points created and returned by all casting functions are

generic, i.e., their robot-type match to other points is checked
during run-time and not during translation.

- CASTPOINT can accept only a list-of-coordinates as point
parameter. Using point variables or properties instead will raise
a translation syntax error.

- The type (i.e., joint or location) of the point created and returned
by CASTPOINT is determined by the type of the list-of-
coordinates parameter.

- In CASTPOINT, the robot-type input must match the size of the
list-of-coordinates parameter.

- Values of point coordinates created and returned by
CASTPOINT are taken from the list-of-coordinates argument.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 4 of 22

Written By: Authorized By Authorization Date:

 4

Common shared GenJoint as Generic Joint /* Generic point */

Common shared GenLoc as Generic Location /* Generic point */

Common shared JointXYZ as joint of XYZ /* Non-generic point */

Common shared LocXYZ as Location of XYZ /* Non-generic point */

GenJoint = CASTPOINT(}0.0, 10.0, 20.0}, TYPE_XYZ) OK

GenLoc = CASTPOINT(#{0.0, 0.0, 0.0}, TYPE_XYZ)  OK

/* Casting of a non-generic point – robot-types must match */

JointXYZ = CASTPOINT({0, 1, 1}, TYPE_XYZ) OK, TYPE_XYZ is redundant

Translation errors:

/* First parameter must be a list-of-coordinates */

GenLoc = CASTPOINT(LocXYZ, TYPE_XYZ)  Syntax error

/* Casting of a joint generic point, using a location-type list */

GenJoint = CASTPOINT(#}0.0, 10.0, 20.0}, TYPE_XYZ) Wrong input type

/* Casting of a location generic point, using a joint-type list */

GenLoc = CASTPOINT(}0.0, 0.0, 0.0}, TYPE_XYZ)  Wrong input type

Run-time errors:

/* Size of list-of-coordinates does not match robot-type */

GenJoint = CASTPOINT({1, 0, 0}, TYPE_XYZR)  Size mismatch

/* Invalid robot-type value */

GenLoc = CASTPOINT(#}0.0, 10.0, 20.0}, 100)  Invalid robot-type

/* Casting of a non-generic point, using a different robot-type */

JointXYZ = CASTPOINT({0,0,0,0}, TYPE_XYZR)  Robot-type mismatch

RobotXYZR.TOOL = CASTPOINT(#{260,0,0},TYPE_XYZ)Robot-type mismatch

- CASTJOINT creates and returns a joint-type point. Number of
coordinates and robot-type are both determined by robot-type
input.

- CASTLOCATION creates and returns a location-type point.
Number of coordinates and robot-type are both determined by
robot-type input.

- Both CASTJOINT and CASTLOCATION can accept double- or
long-type scalar expressions, as well as single-dimension
double- or long-type whole arrays. However, these casting
functions cannot accept point arguments.

- CASTJOINT and CASTLOCATION accepting a double- or long-
type scalar expression will create a point composed of identical
coordinate values, taken from the expression’s value.

- Coordinate values of CASTJOINT and CASTLOCATION
accepting a whole double- or long-type array will be taken from
the array elements in the same order of appearance, i.e., first
coordinate will be assigned by first array element, etc. If the

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 5 of 22

Written By: Authorized By Authorization Date:

 5

number of array elements exceeds the number of coordinates
determined by robot-type argument, redundant values will be
ignored. On the other hand, if the number of coordinates
exceeds the number of array elements, a run-time error will be
raised.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 6 of 22

Written By: Authorized By Authorization Date:

 6

Common shared GenJoint as Generic Joint /* Generic point */

Common shared GenLoc as Generic Location /* Generic point */

Common shared JointXYZ as joint of XYZ /* Non-generic point */

Common shared LocXYZ as Location of XYZ /* Non-generic point */

Common shared DblArr2Dim[2][2] as Double

Common shared DblArr[3] as Double

DblArr[1] = 2.6

DblArr[1] = 1.8

DblArr[3] = 0.5

Dim shared LngArr[4] as Long

LngArr[1] = 1

LngArr[1] = 0

LngArr[3] = 2

LngArr[4] = 10

Dim Shared LngVar as Long = 3

Dim DblVar as Double = 2.5

/* First argument is a long- or double-type scalar */

GenJoint = CASTJOINT(1, TYPE_XYZ) {1, 1, 1}

? CASTJOINT(DblVar, TYPE_XYZR) {2.5, 2.5, 2.5, 2.5}

GenLoc = CASTLOCATION(LngArr[4], TYPE_XY) #{10, 10}

/* First argument is a single-dimension long- or double-type whole

array */

? CASTJOINT(LngArr, TYPE_XY) {1, 0} /* Last two array elements are

ignored */

LocXYZ = CASTLOCATION(DblArr, TYPE_XYZ) #{2.6, 1.8, 0.5}

/* First argument is a complex expression */

GenLoc = CASTLOCATION(0.5+1, TYPE_XYZR) #{1.5, 1.5, 1.5, 1.5}

Translation errors:

/* First argument is not a point */

GenLoc = CASTLOCATION(LocXYZ, TYPE_XYZ)  Syntax error

GenJoint = CASTJOINT(}0.0, 10.0, 20.0}, TYPE_XYZ) Syntax error

/* Only a single-dimension array can be used as argument */

LocXYZ = CASTLOCATION(DblArr2Dim, TYPE_XYZ) Syntax error

 Run-time errors:

/* Array argument has less elements (3) than coordinates of robot-

type (4) */

? CASTJOINT(DblArr, TYPE_XYZR)  Size mismatch

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 7 of 22

Written By: Authorized By Authorization Date:

 7

- Casting may be used to initialize newly declared generic points
by giving them a robot-type, size and coordinate values. It can
be used within declaration statement itself, and anywhere
throughout application.

Common shared GenJoint as Generic Joint = CASTJOINT(1.1, TYPE_XYZ)

Dim shared GenLoc as Generic Location = CASTPOINT(#{1.0,0.0,0.0}, TYPE_XYZ)

- The “robot_type” argument of the casting functions can be any

long-type expression (a double-type value will be converted to
long).

- The robot-type parameter must return a valid robot-type value.
For this purpose, a list of constants, representing valid robot-
type values, will be added to language. These constants may be
used as robot-type parameters in casting functions (see below).

- Assignment of a point returned for casting function into a non-
generic point (with a predefined robot-type) wil result in
assignment of the point’s values by the values of the list-of-
coordinates input, but a matching robot-type input will be
ignored. However, if the robot-types do not match, a run-time
error will be raised.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 8 of 22

Written By: Authorized By Authorization Date:

 8

List of robot_type constants and their values:

? TYPE_NONE  0 /*coordinate lists, uninitialized generic points*/

? TYPE_X  1

? TYPE_XY  2

? TYPE_XYZ  3

? TYPE_XYZU  4

? TYPE_XYZUV  5

? TYPE_XYZUVW  6

? TYPE_XYR  7

? TYPE_XYRZ  8

? TYPE_XYRZU  9

? TYPE_XYRZUV  10

? TYPE_XYZR  11

? TYPE_XYZRU  12

? TYPE_XYZRUV  13

? TYPE_XYZURV  14

? TYPE_XYZUR  15

? TYPE_XYZRPU  16

? TYPE_XYZRP  17

? TYPE_XYRURV  18

? TYPE_XYRUR  19

? TYPE_XYRP  20

? TYPE_XYRPU  21

? TYPE_XYRPUV  22

? TYPE_XYRPUQ  23

? TYPE_XYZYPR  24

? TYPE_C7  22

? TYPE_C8  22

? TYPE_C9  22

? TYPE_C10  28

? TYPE_CMAX  29

? TYPE_USER1  31

? TYPE_USER2  32

? TYPE_USER3  33

? TYPE_USER4  34

? TYPE_USER5  35

? TYPE_XYZPR  36

? TYPE_XYZA  32

? TYPE_XYZAB  38

? TYPE_C11  39

? TYPE_C12  41

? TYPE_C13  42

? TYPE_C14  43

? TYPE_C15  44

? TYPE_C16  45

? TYPE_C17  46

? TYPE_C18  47

? TYPE_C19  48

? TYPE_C20  49

? TYPE_YPR  50

? TYPE_PR  51

? TYPE_R  52

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 9 of 22

Written By: Authorized By Authorization Date:

 9

3. Assignment

3.1 Initialization through assignment

Assignment may be used to initialize newly declared generic points by
giving them the robot-type, size and coordinate values of the “right-
side” point in the assignment statement.

- For initializtion through assignmnet, the “right side” of the
assignment statement must have a predefined robot-type as in
non-generic point variables, generic points with robot-types, and
point properties. Therefore, initialization cannot be performed
through assignment of a list of coordinates.

- Initialization through assignment requiers point-type match, i.e.,
joint generic points must be initialized by joint-type points, and
location generic points must be initialized by location-type
points.

- Initialization through assignmnet may be performed within
declartion statement.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 10 of 22

Written By: Authorized By Authorization Date:

 11

Initialization of generic points through assignment:

Common shared GenJoint as Generic Joint

Common shared GenLoc as Generic Location

Common shared XYZJoint as Joint of XYZ

Common shared XYZLoc as Location of XYZ

Dim GenJointArr[10] as Generic Joint

/* Initialization within declaration statemnt */

Dim GenPoint as Generic location = XYZLoc

/* Type mismatch */

GenJoint = XYZLoc  Translation error

/* Type mismatch */

GenLoc = XYZRobot.VCMD  Translation error

/* “Right side” is a list of coordinates, with no robot-type */

GenLoc = #{1.0, 0.0, -1.0)  Run-time error

/* “Right side” generic point is not initialized */

GenJoint = GenJointArr[1]  OK, but GenJoint remain uninitialized

/* Initialization through a pre-initialized generic point */

GenJointArr[1] = CASTPOINT({1.0, 0.0, -1.0}, TYPE_XYZ)

GenJoint = GenJointArr[1]  OK

/* Initialization through a non-generic point */

GenJoint = XYZJoint  OK

/* Initialization through a point property */

GenLoc = XYZRobot.HERE  OK

3.2 Assignment after initialization

After initialization, the robot-type of a generic point can be changed
numerous times through the CASTPOINT function (see section 2), as
well as through a regular assignment statement.

- Whenever the left-side of the assignment statement is a generic
point, its robot-type (and size) will be run-over by the robot-type
(and size) of the right-side point.

- On the other hand, assignment of a non-generic point by a point
having a different robot-type will result in a “Robot-type
mismatch” run-time error.

- Assignment of a list-of-coordinates (with no robot-type) into a
generic is allowed only if the generic point already has a robot-
type, and if sizes match.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 11 of 22

Written By: Authorized By Authorization Date:

 11

- Assignment of a preinitialized generic point by a non-initialized
generic point is allowed, but will result in nullification of the
preinitialized point.

Assignment rules of generic points after initialization:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYZLoc as Location of XYZ

Common shared XYZJoint as Joint of XYZ

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim GenLocArr[10] as Generic Location

GenLocArr[1] = XYZRLoc

Dim GenJointArr[2][2] as Generic Joint

GenJointArr[1][1] = CASTPOINT({1,1,1}, TYPE_XYR)

GenLoc = XYZRLoc  OK, changed robot-type to XYZR

GenJoint = XYRRobot.PFB  OK, changed robot-type to XYR

GenJoint = GenJointArr[1][1]  OK, robot-type remained XYR

GenJoint = {10.0, 0.0, -10.0}  OK, matching size

/* Point-type mismatch */

GenLoc = GenJoint  Translation error

GenLoc = XYZJoint  Translation error

GenJoint = #{10.0, 0.0, -10.0}  Translation error

GenJoint = XYZRobot.BASE  Translation error

/* Robot-type mismatch */

XYZRJoint = GenJoint  Run-time error (XYZR vs. XYR)

XYRRobot.BASE = GenLoc  Run-time error (XYR vs. XYZR)

/* Size mismatch */

GenLoc = #{1.0, 0.0, -1.0)  Run-time error (size 4 vs. 3)

/* Assignment by a non-initialized generic point */

GenJoint = GenJointArr[2][2]  OK, but GenJoint will be nullified

4. Binary operations

Addition, subtraction and compound operators are operated between
two points.

- In case one, or both points are generic, robot-type (or size,
when the other point is a list-of-coordinates) of the two points
must match.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 12 of 22

Written By: Authorized By Authorization Date:

 12

Rules for binary operations with generic points:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYZLoc as Location of XYZ

Common shared XYZJoint as Joint of XYZ

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim GenLocArr[10] as Generic Location

GenLocArr[1] = XYZRLoc

Dim GenJointArr[2][2] as Generic Joint

GenJointArr[1][1] = CASTPOINT({1,1,1}, TYPE_XYR)

? GenJoint + GenJointArr[1][1]  OK, point- and robot-types match

? GenLoc + XYZLoc  OK, point- and robot-types match

? GenLoc - XYZRobot.BASE  OK, point- and robot-types match

? GenJoint : {10.0, 0.0, -10.0}  OK, point-types and sizes match

/* Point-type mismatch */

? GenLoc + GenJoint  Translation error

? GenLoc + XYZJoint  Translation error

? GenJoint - XYZRobot.BASE  Translation error

? GenJoint : #{10.0, 0.0, -10.0}  Translation error

/* Robot-type mismatch */

? GenLoc + XYZRLoc  Run-time error (XYZ vs. XYZR)

? XYRRobot.PCMD : GenJoint  Run-time error (XYR vs. XYZ)

? GenJoint - GenJointArr[1][1]  Run-time error (XYZ vs. XYR)

/* Binary operation with a non-initialized generic point */

? GenJointArr[2][2] + GenJoint  Run-time error (NONE vs. XYZ)

/* Size mismatch */

? GenLoc - #{1.0, 0.0, -1.0, 0.0)  Run-time error (size 4 vs. 3)

- The result of a binary operation between two generic points is a
generic point.

- The result of a binary operation between a generic point and a
list-of-coordinates is also a generic point.

- The result of a binary operation between a generic point and a
non-generic point variable is a non-generic point.

- The result of a binary operation between a generic point and a
point property is also a non-generic point.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 13 of 22

Written By: Authorized By Authorization Date:

 13

Type of points resulting from binary operations with generic points:

<generic_point> + <generic_point>  <generic_point>

<generic_point> - <list_of_coordinates>  <generic_point>

<generic_point> : <non_generic_point_variable>  <non_generic_point>

<generic_point> + <point_property>  <non_generic_point>

5. Assisting functions

5.1 ROBOTTYPE

Identification of robot-type is especially important in generic points,
since robot-type may be changed numerous times throughout
application. The ROBOTTYPE function can be applied for generic
points, non-generic points, point properties and lists of coordinates,
returning a long-type value corresponding to the robot-type. In case of
non-initialized generic points, as well as for lists- of-coordinates, the
returned value is 0.

? ROBOTTYPE(<point_name | list_of_coordinates | point_property>)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared GenLocArr[10] as Generic Location

Dim shared LocXYZR as Location of XYZR

Dim shared JointXYZ as Joint of XYZ

GenLocArr[1] = LocXYZR

/* Initialized generic points */

? ROBOTTYPE(GenJoint)  3

? ROBOTTYPE(GenLocArr[1])  11

/* Non-initialized generic point */

? ROBOTTYPE(GenLocArr[3])  0

/* Non-generic point */

? ROBOTTYPE(JointXYZ)  3

/* Point property */

? ROBOTTYPE(XYZRRobot.START)  11

/* List-of-coordinates */

? ROBOTTYPE(#{1.0, 0.0, 1.0, 0.0})  0

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 14 of 22

Written By: Authorized By Authorization Date:

 14

5.2 ROBOTTYPE$

The ROBOTTYPE$ function can be applied for generic points, non-
generic points, point properties and lists of coordinates, returning a
string containing the name of the robot-type. In case of non-initialized
generic points, as well as for lists-of-coordinates, the returned string
will contain “NONE”.

? ROBOTTYPE$(<point_name | list_of_coordinates | point_property>)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared GenLocArr[10] as Generic Location

Dim shared LocXYZR as Location of XYZR

Dim shared JointXYZ as Joint of XYZ

GenLocArr[1] = LocXYZR

/* Initialized generic points */

? ROBOTTYPE(GenJoint)  “XYZ”

? ROBOTTYPE(GenLocArr[1])  “XYZR”

/* Non-initialized generic point */

? ROBOTTYPE(GenLocArr[3])  “NONE”

/* Non-generic point */

? ROBOTTYPE(JointXYZ)  “XYZ”

/* Point property */

? ROBOTTYPE(XYZRRobot.START)  “XYZR”

/* List-of-coordinates */

? ROBOTTYPE(#{1.0, 0.0, 1.0, 0.0})  “NONE”

5.3 NOOFCOORDINATES

The ability to detect the point’s size (number of coordinates) is also
important in generic point, since size may vary throughout application,
due to changes in robot type. The NOOFCOORDINATES function can
be applied for generic points, non-generic points, lists of coordinates
and point properties. If a generic point is not initialized – the function
will return zero.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 15 of 22

Written By: Authorized By Authorization Date:

 15

? NOOFCOORDINATES(<point_name>)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared GenLocArr[10] as Generic Location

Dim shared LocXYZR as Location of XYZR

Dim shared JointXYZ as Joint of XYZ

GenLocArr[1] = LocXYZR

/* Initialized generic points */

? NOOFCOORDINATES(GenJoint)  3

? NOOFCOORDINATES(GenLocArr[1])  4

/* Non-initialized generic point */

? NOOFCOORDINATES(GenLocArr{2])  0

/* Non generic point */

? NOOFCOORDINATES(JointXYZ)  3

/* Point property */

? NOOFCOORDINATES(XYZRRobot.START)  4

/* List of coordinates */

? NOOFCOORDINATES(#{1.0, 0.0, 1.0, 0.0})  4

6. Functions and subroutines

6.1 By-Value Parameters

Generic points can be used as by-value parameters in function and
subroutine prototypes. On the other hand, they can also be passed by-
value to both generic and non-generic point parameters. Generic points
passed by-value to non-generic point parameters must be initialized
first.
 - Generic points used as by-value parameters in function and

subroutine prototypes can accept generic points, non-generic
points and point properties. The only limitation is that point-types
(i.e., joint vs. location) must match. Passage of a non-initialized
generic point will result in an uninitialized point parameter, which
might cause run-time errors when used inside the function’s
block. Passing lists of coordinates, which do not have robot-
types, is forbidden. Thereby, passing a point by-value to a
generic point parameter resembles initialization through
assignment (see section 3).

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 16 of 22

Written By: Authorized By Authorization Date:

 16

Generic points as by-value parameters in function \ subroutine

prototypes:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim GenJointArr[10] as Generic Joint

Sub MySub1(ByVal GenParamJoint as Generic Joint)

…

End Sub

Passing points with robot-types:

Call MySub1(GenJoint)  OK, initialized generic point

Call MySub1(XYZRJoint)  OK, non generic point

Call MySub1(XYZRobot.DEST_JOINT)  OK, point property

Point-type mismatch:

Call MySub1(GenLoc)  Translation error

Call MySub1(XYZRLoc)  Translation error

Call MySub1(XYZRobot.DEST)  Translation error

Passing points without robot-types:

/* A list of coordinates */

Call MySub1({10.0, 0.0, -10.0})  Run-time error

/* Non-initialized generic point */

Call MySub1(GenJointArr[1])  OK, but parameter is uninitialized

Sub MySub1(ByVal GenParamJoint as Generic Joint)

 Move XYZRobot GenParamJoint  Run-time error

End Sub

- On the other hand, generic points passed by-value to non-
generic point parameters of functions and subroutines must also
match prototype in robot-type, as well as in point-type.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 17 of 22

Written By: Authorized By Authorization Date:

 17

Generic points passed by-value to non-generic point parameters:

Common shared GenLoc as Generic Location = CASTPOINT(#{0,0,0,0), TYPE_XYZR)

Common shared GenJoint as Generic Joint = CASTPOINT({0,0,0,0), TYPE_XYZR)

Common shared XYZLoc as Location of XYZ

Common shared XYZRJoint as Joint of XYZR

Dim GenLocArr[10] as Generic Location

GenLocArr[1] = XYZLoc

Sub MySub2(ByVal ParamXYZRLoc as Location of XYZR)

…

End Sub

Call MySub2(GenLoc)  OK (robot-type of GenLoc is XYZR)

/* Point-type mismatch */

Call MySub2(GenJoint)  Translation error

/* Robot-type mismatch */

Call MySub2(GenLocArr[1])  Run-time error

/* Non-initialized generic point */

Call MySub2(GenLocArr[4])  Run-time error (robot-type mismatch)

6.2 By-Reference Parameters

Generic points can be used as by-reference parameters in function and
subroutine prototypes. On the other hand, they can also be passed by-
reference to both generic and non-generic point parameters.

- Generic points used as by-reference parameters in function and
subroutine prototypes can accept generic points and non-
generic point variables, but cannot accept lists of coordinates,
and point properties. The only limitation is that point-types (i.e.,
joint vs. location) must match. Non-initialized generic points can
be passed by-reference, and may be initialized inside function \
subroutine block. However, usage without initialization within
function \ subroutine block might raise a run-time error.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 18 of 22

Written By: Authorized By Authorization Date:

 18

Generic points as by-reference parameters in function \ subrotine

prototypes:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYRLoc as Location of XYR

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim GenLocArr[10] as Generic Location

Function MyFunc1(GenParamLoc as Generic Location) as long

…

End Function

? MyFunc1(GenLoc)  OK, generic point variable

? MyFunc1(XYRLoc)  OK, non-generic point variable

/* Passing “values” by-reference is not allowed */

? MyFunc1(#{10.0, 0.0, -10.0})  Translation error

? MyFunc1(CASTPOINT(#{10.0,0.0,-10.0},TYPE_XYZ)) Translation error

? MyFunc1(XYZRobot.DEST)  Translation error

/* Point-type mismatch */

? MyFunc1(GenJoint)  Translation error

? MyFunc1(XYZRJoint)  Translation error

/* Changing robot-type inside the function’s block */

Function MyFunc1(GenParamLoc as Generic Location) as long

GenParamLoc = XYZRLoc

End Function

? MyFunc1(GenLoc) OK. Robot-type of GenLoc was changed to XYZR.

? MyFunc1(XYRLoc) Error. Robot-types of XYRLoc and XYZRLoc differ.

/* Non-initialized generic points: no error for function call, but

run-time error when trying to use the non-initialized parameter

inside the function’s block */

? MyFunc1(GenLocArr[1])  No error for function call

Function MyFunc1(GenParamLoc as Generic Location) as long

? GenParamLoc + #{1,0,1}  Run-time error

/* Initialization inside the function block */

GenParamLoc = XYRLoc

End Function

- On the other hand, generic points can be passed by-reference

as non-generic point parameters of functions and subroutines.
Although the only limitation is that point-types (i.e., joint vs.
location) must match, it is the user’s responsibility to also match
the robot-type of the non-generic to prototype. Otherwise, robot-
type declared in prototype becomes inapplicable. Therefore,

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 19 of 22

Written By: Authorized By Authorization Date:

 19

passing a generic point by-reference to a non-generic prototype
will raise a translation note.

Generic points passed by-reference to non-generic point parameters:

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim GenJointArr[10] as Generic Joint

GenJointArr[1] = XYZRJoint

Function MyFunc2(ParamXYZJoint as Joint of XYZ) as String

/* Query the robot-type of the non-generic parameter */

 MyFunc2 = ROBOTTYPE$(ParamXYZJoint)

End Function

/* Initialized generic point with a matching robot-type */

? MyFunc2(GenJoint)  “XYZ”, Translation note

/* Initialized generic point with a non-matching robot-type */

? MyFunc2(GenJointArr[1])  “XYZR”, Translation note

/* Non-Initialized generic point with no robot-type */

? MyFunc2(GenJointArr[2])  “NONE”, Translation note

/* Point-type mismatch */

? MyFunc2(GenLoc)  Translation error

6.3 Returned-Values

Generic points can be used as returned-values of functions. On the
other hand, they can also be assigned to both generic and non-generic
point returned-values. For assignment into non-generic point returned-
values - generic points must be initialized first.

- Generic points used as returned-values of functions can be
assigned by generic points, non-generic points and point
properties. The only limitation is that point-types (i.e., joint vs.
location) must match. Assignment of a non-initialized generic
point will result in an uninitialized returned-value, which might
cause run-time errors when used inside or outside the function’s
block. Assignment of lists of coordinates, which do not have
robot -types, is forbidden. Thereby, assignment of a generic
returned-value resembles initialization through assignment (see
section 3).

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 20 of 22

Written By: Authorized By Authorization Date:

 21

Generic points as returned-values in functions:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYZRLoc as Location of XYZR

Common shared XYZRJoint as Joint of XYZR

Dim shared GenLocArr[10] as Generic Joint

Function GenLocFunc(…) as Generic Location

 GenLocFunc = <location_point>

End Function

Assignments with robot-types:

GenLocFunc = GenLoc  OK, initialized generic point

GenLocFun = XYZRLoc  OK, non-generic point

GenLocFunc = XYZRobot.DEST  OK, point property

Point-type mismatch:

GenLocFunc = GenJoint  Translation error

GenLocFunc = XYZRJoint  Translation error

GenLocFunc = XYZRobot.DEST_JOINT  Translation error

Assignments without robot-types:

/* A list of coordinates */

GenLocFunc = #{10.0, 0.0, -10.0}  Run-time error

/* Non-initialized generic point */

GenLocFunc = GenLocArr[1]  OK, but returned-value is uninitialized

/*Using a non-initialized returned value will cause run-time error*/

Move XYZRobot GenLocFunc(…)

- On the other hand, generic points assigned into non-generic

point returned-values of functions must also match prototype in
robot-type, as well as in point-type.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 21 of 22

Written By: Authorized By Authorization Date:

 21

Generic points assigned into non-generic point returned-values:

Common shared GenLoc as Generic Location=CASTPOINT(#{0,0,0},TYPE_XYZ)

Common shared GenJoint as Generic Joint=CASTPOINT({0,0,0},TYPE_XYZ)

Common shared XYZLoc as Location of XYZ

Common shared XYZJoint as Joint of XYZ

Dim shared XYZRJoint as Joint of XYZR

Dim GenJointArr[10] as Generic Joint

GenJointArr[1] = XYZRJoint

Function JointXYZFunc as Joint of XYZ

JointXYZFunc = <joint_point>

End Function

JointXYZFunc = GenJoint  OK (robot-type of GenJoint is XYZ)

/* Point-type mismatch */

JointXYZFunc = GenLoc  Translation error

/* Robot-type mismatch */

JointXYZFunc = GenJointArr[1]) Run-time error

/* Non-initialized generic point */

JointXYZFunc = GenJointArr[2]  Run-time error (robot-type mismatch)

Motion Issues:
Until now all motion variables ware used with a pre-defined robot-type, with the introduction of

generic-points we will add flexibilities to the motion variables too:

 Arguments of movement commands (target point) will be possible to assign in any robot-type.

Internal conversions will be done inside motion module.

 Robot location properties (BASE, TOOL, ….) will be possible to assign in any robot-type.

Internal conversions will be done inside motion module.

New motion property returning robot type will be added:

<robot>.robottype – returns integer, read-only.

So genpnt = CASTPOINT(0.0, robot.robottype) will generate a location with coordinates of 0 of the

default robot-type of the given robot.

7. Tests
- Tests must include generic points from every scope available:

global, static and local.

AXYSTEMS Ltd. Document No.

Department: Engineering Revision No:1

Document Title: Page 22 of 22

Written By: Authorized By Authorization Date:

 22

- Tests must include both scalars and array elements. Multi-
dimensional arrays should also be tested.

- Tests must include structure elements: scalar and array
structure elements, elements from scalar structures and form
arrays of structures.

- Assignment statements should include generic points in each
side of the statement, as well as in both sides of the statement.

- Binary operations should also include generic points in each side
of the operator, as well as in both sides of the operator.

- Generic points should appear as by-value and by-reference
parameters in prototypes of functions and subroutines.

- Generic points should be used as returned-values of functions.
- Generic points should be passed by-value and by-reference to

functions and subroutines, to both generic and non-generic
parameters.

- Casting functions should be used in assignment statements and
binary operations. They should also be passed by-value to
functions and subroutines.

