
 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

Compensation Tables in SoftMC system

In SOFTMC system multidimensional compensation tables are used to compensate individual axes.

The method of compensation is multidimensional, means that compensation value of an arbitrary point

is obtain by multidimensional interpolation between compensation values of neighboring points as

described in http://www.library.cornell.edu/nr/bookcpdf/c3-6.pdf :

Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate of y(x1, x2, . . . , xn) from an n-dimensional grid of tabulated values y

and n one-dimensional vectors giving the tabulated values of each of the independent variables x 1, x2, . . . , xn. We will not

here consider the problem of interpolating on a mesh that is not Cartesian, i.e., has tabulated function values at “random”

points in n-dimensional space rather than at the vertices of a rectangular array. For clarity, we will consider

explicitly only the case of two dimensions, the cases of three or more dimensions being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values ya[1..m][1..n].We are also given an array

x1a[1..m], and an array x2a[1..n]. The relation of these input quantities to an underlying function y(x 1, x2) is
 ya[j][k] = y(x1a[j], x2a[k]) (1)

We want to estimate, by interpolation, the function y at some untabulated point (x1, x2).

An important concept is that of the grid square in which the point (x1, x2) falls, that is, the four tabulated points that

surround the desired interior point. For convenience, we will number these points from 1 to 4, counterclockwise starting

from the lower left (see Figure 3.6.1). More precisely, if
 x1a[j] ≤ x1 ≤ x1a[j+1]
 x2a[k] ≤ x2 ≤ x2a[k+1] (2)

defines j and k, then

 y1 ≡ ya[j][k]
 y2 ≡ ya[j+1][k]
 y3 ≡ ya[j+1][k+1]
 y4 ≡ ya[j][k+1] (3)

The simplest interpolation in two dimensions is bilinear interpolation on the grid square. Its formulas are:

 t ≡ (x1 − x1a[j])/(x1a[j+1]− x1a[j])
 u ≡ (x2 − x2a[k])/(x2a[k+1]− x2a[k]) (4)

(so that t and u each lie between 0 and 1), and

 y(x1, x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4 (5)

http://www.library.cornell.edu/nr/bookcpdf/c3-6.pdf

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

The implemented compensation method in SOFTMC system is based on equidistant nodes.

Compensation values of each axis are given for all nodes of n-dimensional interpolation. So, having n

axes in the system and each axis has mi points on which the compensation values are defined, we will

have m1*m2*m3...mn compensation values for each axis. This means we will have a total of

n* m1*m2*m3...mn elements. These elements form a Compensation Table which is organized in the

following way:

A compensation table is divided in n raws as defined by CreateComp command:

CreateComp <Table Name> <list of dimensions for each axis>

In our case the list would look like: m1,m2,m3...mn we call these values “entries”.

This command will just allocate the necessary memory but will not assign any values, and the axes on

which the compensation is activated are still not assigned.

The compensation values (offsets) in the table are accessible for each raw (i-th axis in this example) by:

<Table Name>.TargetData[i][k] = < double value>

As each raw actually represent the whole n-dimensional matrix of values it must be organized in strict

manner. The values of each raw of TargetData are written as (example of two axis):

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

A11,A12,....,A1p, A21,A22,...............Ar1,Ar2,....Arp

this for the case of two axis first having p values and second having r values (p, r are entered in

CreateComp command, “entries”).

In order to complete definition of the table we must define the compensation function domain, i.e. The

source-data, the source data will be defined by pairs of min-max values for each entry of the

compensation table:

<Table Name>.MinPosition[i] = ...

<Table Name>.MaxPosition[i] = ...

Strictly speaking, the compensation table defines n mappings of the form:

COMPi: [min1, max1] x [min2, max2] ... x [minn, maxn] → R or in other notation ci= COMPi(x1, ...xn)

The ci values are added to axis values.

Additionally the domain of compensation mapping is accessible (read-only) by auxiliary property

matrix SourceTable. Different from TargetTable this does not represent the actual memory values in

the table but just gives a way of checking them. The values of source table are organized in same way

as target and the only difference is that they do not represent the compensation value of the axis

(entry)of the given index. Note that SourceTable values are not used in computation of compensation

values, they are computed on-the fly each time user queries them.

The final stop of liniking the table and the axis is done using CompSet command where the source and

target list oof axes are connected via the given compensation table:

CompSet <Table Name> <source axes list> on <target axes list>

Where source and target axes list can differ but not have to.

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

Example

First example will be given on a compensation table of two axes a1 and a2.

First of all a compensation table is defined as global data object in the configuration file:

common shared MyTable as comp

We will spawn the table across two axes on the whole range of their position values, using a predefined

step size:

 StepSize = 1

 Size1 = (a1.pMax-a1.Pmin)/stepsize + 1

 Size2 = (a2.pMax-a2.Pmin)/stepsize + 1

 ' Create the table

 CreateComp MyTable Size1 , Size2

 MyTable.MinPosition[1] = a1.PMin

 MyTable.MaxPosition[1] = a1.PMax

 MyTable.MinPosition[2] = a2.PMin

 MyTable.MaxPosition[2] = a2.PMax

In the above example the distance between the points is 1 user units (deg, mm, whatever it is). Now we

have a ready table to fill in. We will define a compensation values on one axis (entry only) as

exponential function. As the compensation values are organized in the table as matrices first using the

first index we need to enter the values using a general index i:

MyTable.TargetData[1][i] = dAxScale * exp(-((MyTable.SourceData[1][i]-145.5)/55)^2)

the general index i should represent the table organization so it is defined by:

 i = (ind2-1)*Size1 + ind1 ' Table index

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

reading the table generated in this way on first last and middle column is done by:

 open "Table.dat" MOde ="w" As #10

 for i = 1 to Size1

 print #10,MyTable.TargetData[1][i];", ";MyTable.TargetData[1][i+int(Size2/2)*Size1];", "; MyTable.TargetData[1][i+int(Size2-1)*size1]

 sleep 10

 next

 close #10

Looking at the table values for different step sizes (1,10,30) gives what we have expected:

Testing the generated compensation table by moving axis a2 to positions (-10,52,176,238,300) and

writing the compensation offset on axis a1 is done by:

 for i = 1 to 5

 open str$(abs(ax2pos[i]))+".dat" MOde ="w" As #10

 move a2 ax2pos[i] abs=1 vcruise = 20

 while a2.IsMoving

 sleep 1

 end while

 Print "At axis 2: ", ax2pos[i]

 for lIndex = round(a1.PMin) to round(a1.PMax)

 move a1 lIndex abs=1 vrate=5 arate=5 drate=5

 while (a1.IsMoving)

 sleep(20)

Compensation Table Data Step = 1

a1

compensation value of a2

0 50 100 150 200 250 300 350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

dAxScale = 1

dAxScale = 0.5

dAxScale = 0.0032154

Compensation Table Data Step = 10

a1

compensation value of a2

0 5 10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

dAxScale = 1

dAxScale = 0.5

dAxScale = 0.03125

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

 end while

 print #10, a1.Pfb, a1.CompPCMD-lIndex

 next

 close #10

 Print ax2pos[i], "done .."

 next

Looking at the results for different step sizes (1,10,30):

which are the expected results. The above example showed a combined cross compensation where the

compensation values depend on both axis of the system.

Next example will show the case of simple cross compensation where one axis completely defines

compensation values of the other axis:

In this case we define one-entry table as:

 StepSize = 1' Choose different step sizes

 Size1 = (a1.pMax-a1.Pmin)/stepsize + 1

 Size2 = (a2.pMax-a2.Pmin)/stepsize + 1

 MaxSize = max(Size1,Size2)

 ' Create the table

 CreateComp MyTable MaxSize

 MyTable.MinPosition[1] = a1.PMin

 MyTable.MaxPosition[1] = a1.PMax

The table is computed as:

 ' Define compensation values

Compensation on a1 Step = 1

a1.pcmd

a1.CompPCMD-a1.PCMD

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a2 = -10

a2 = 52

a2 = 176

a2 = 238

a2 = 300

Compensation on a1 Step = 10

a1.pcmd

a1.CompPCMD-a1.PCMD

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a2 = -10

a2 = 52

a2 = 176

a2 = 238

a2 = 300

Compensation on a1 Step = 30

a1.pcmd

a1.CompPCMD-a1.PCMD

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a2 = -10

a2 = 52

a2 = 176

a2 = 238

a2 = 300

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

 for i = 1 to MaxSize ' second axis points

 MyTable.TargetData[1][i] = exp(-((MyTable.SourceData[1][i]-145.5)/55)^2) ' Here it is OK

 next

 ver 1

21C Yagia Kapayim • P.O.B. 3919, Petach Tikva 49130, Israel • Tel: +972.3.9273800

 www.servotronix.com • info@servotronix.com

In the same way as before we read the created table values and the compensation values on the axis a2

(for steps of 1 and 15):

As the compensation values depend on one axis only we have all values overlapped:

Compensation Table DataOne Dimensional Step = 1

a1

compensation value of a2

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Compensation Table DataOne Dimensional Step = 15

a1

compensation value of a2

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Compensation on a1One Dimensional Step = 1

a1.pcmd

a1.CompPCMD-a1.PCMD

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a2 = -10

a2 = 52

a2 = 176

a2 = 238

a2 = 300

Compensation on a1One Dimensional Step = 15

a1.pcmd

a1.CompPCMD-a1.PCMD

-50 0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a2 = -10

a2 = 52

a2 = 176

a2 = 238

a2 = 300

