
C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Open Kinematics Interface

Introduction ... 2
Creating a template ... 4
Adding user code .. 6

Internal presentation of Cartesian points .. 6
Internal presentation of Joint points .. 7
Robot Configuration Flags .. 7
Kinematics functions .. 8

Configuration Function ... 8
Inverse Kinematics Function .. 8

Direct Kinematics Function .. 8
Working Envelope Test Function ... 8

Off-Line Computation Function ... 8
Inverse Jacobian Function... 9
Linking the Kinematics Functions to the User template ... 10
Example .. 11

Code: ... 14

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Introduction

 This document describes implementation of user-defined robot kinematics in the
SoftMC system. The supported robot models are limited to 6 axis robots having unique
solution of direct kinematics problem.

In order to handle basic kinematics mappings the following terms are defined:

 World-Space: A fixed coordinate system referenced to the base of the robot.
usually expressed in Cartesian coordinates for position (X, Y, Z) and another set of
coordinates representing orientation, the set of orientation coordinates can differ between
many available presentations (Euler angles, quaternion, rotation matrices, ...). Elements of
this space we usually call Cartesian points.

 Joint-Space. A coordinate system used to describe the state of the robot in terms
of its joint states. Usually a set of joint angles (angles between robot segments) for rotary
joints or displacement for linear joints. In many cases they directly represent the motor
positions, but in some cases a non-diagonal coupling matrix can be used for translating
motor angles into joint angles/displacements. Elements of this space we usually call Joint
points.

 User Kinematics is a set of user-defined algorithms representing the core
kinematics functionality of a robot. Basically it consist of two main functions: Inverse
Kinematics (IK) and Direct Kinematics (DK). Inverse Kinematics translate Cartesian or
world points into joint coordinates. Usually it contains configuration description of the
robot for each given world-space point. Direct Kinematics function translate the given joint
point (or joint coordinates) into world point of any chosen coordinate system. For an
arbitrary robot two auxiliary functions define its kinematics, first is checking the available
world-space working envelope (AF – accessibility function), and the second is the
auxiliary function (CF- configuration function) defining the configuration flags of any
given joint point.

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

 In cases of simple robot kinematics or extensive analytical models inverse velocity
mapping can be defined (IJ - inverse Jacobian function). It is basically the matrix product
of robot inverse Jacobian matrix at the given joint coordinates with the actual world
velocity vector. As this function can be very complex and not always analytically available,
having it is not mandatory. It can be omitted and then the SoftMC system takes the numeric
derivative instead (which is slightly less accurate, depending on these elected sample time
and robots velocity).

To summarize:

Direct Kinematics:: DK: JS → WS
Inverse Kinematics:: IK: WS x CS → JS
Configuration Function:: CF: JS → CS

Accessibility Function:: AF:WS → {true, false}
Inverse Jacobian Function ::: IJ: WS x JS→ JS

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Creating a template

First of all a template element has to be created this is done using the special “model”
value (5) identifier for user kinematics groups:

Common Shared <robot name> as group {axnm = <axis name>,} model = 5 of
<pointtype>

This line defines a robotic group having undefined kinematic model (until it is linked to
user functions) spawn on given axes and using the given point type for
commands/queries. The <pointtype> is point descriptor and one of the following
currently supported point types:

Point Type Description # coo
XY XY table 2

XYZ XYZ system 3
XYZR XYZ + Roll 4

XYZRP XYZ + Roll + Pitch 5
XYZPR XYZ + Pitch + Roll 5

XYZYPR XYZ + Yaw + Pitch + Roll 6

Additionally user-defined point types can be selected, there are 5 predefined user point
types: USER1, USER2, USER3, ..., USER5.

If one of these is selected user need to provide conversion functions between user given
Cartesian point coordinates and internal Cartesian point representation (See: Internal
presentation of Cartesian points) This will be done using the function:

int rbt_SetUsrPnt(int usr, int size, utype set, utype get)

where:

• usr is the point index (1,2,3,4,5) denoting which one of the user-defined point
types is taken (USER1, ... USER5).

• size is the number of coordinates used for this point type (1 .. 7).
• set is a user-provided function for converting user-given coordinates (#{...}) into

internal Cartesian point.
• get is the user provided function converting internal Cartesian point presentation

into user-given coordinates (#{...})
• utype is defined as:

typedef int (*utype)(double *vector,double *car);

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Where vector is a double floating point array of the user-provided (obtained) coordinates
(exact copy of the list between "#{" and "}" and car is the double floating point array of
internal Cartesian point representation.

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Adding user code

Internal presentation of Cartesian points

In the softMC system all Cartesian points (independently of the selected model or point
type) are represented by the following structure:

Component coordinates description
Position X X in mm

Y Y in mm
Z Z in mm

Orientation
Quaternion

Cos (Phi/2) denoted as "Ro"
also

Nx*Sin (Phi/2)
Ny*Sin(Phi/2)
Nz*Sin(Phi/2)

Note that all internal softMC orientations are represented by quaternions of the form:
[Cos(phi/2), n*Sin(phi/2)] where b = (Nx,Ny,Nz) and ||n|| =1. Therefore all Cartesian
points will be handled as double floating point arrays of 7 elements, for all types of
robots

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Internal presentation of Joint points

Joint points are internally represented as double floating point arrays. The units are
radians or millimeters depending on axis type (rotary, linear).
Robot Configuration Flags

Robot configuration flags will be represented as a bit filed with following order:

Flag Name Bits
Arm Lefty(1), Righty(2) B0-B1
Elbow Below(1), Above(2) B2-B3
Wrist NoFlip(1), Flip(2) B4-B5

The flags will be transferred as a long integer (32 bit) value. Note that the filed names of
the configuration flags are appropriate for general open-kinematics structures. However
more than these three configuration flags are not supported in the system (language
constrain). Also the filed names could be inappropriate for different kinematics types. If a
kinematics that is implemented demands more than three configuration flags they must be
implemented via user functions.

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Kinematics functions

Once the kinematics equations have been written the following user functions have to be
codded.

Configuration Function

int Config(double *jnt)

Where jnt is the joint coordinates array and the returned value is long integer representing
the robot configuration flags for the given joint coordinates.

Inverse Kinematics Function

int InverseKinematics(int cfg, double *cpnt, double *jnt)

Where:
cfg – desired robot configuration
cpnt – artesian point
jnt – joint point

Function returns 0 if everything is OK and nonzero number (1,2,3, ...) of axis where a
problem is detected.

Direct Kinematics Function

int DirectKinematics(double *cpnt, double *jnt)

Where:
cpnt – Cartesian point
jnt – joint point

Function returns 0 if everything is OK and nonzero number (1,2,3, ...) of axis where a
problem is detected.

Working Envelope Test Function

int Accessible(double *cpnt)

Check if the given point is in the working envelope of the robot. If yes returned 0. If the
point is on the outer side of the working envelope 1 is returned. If it is too close to the
zero origin point -1 is returned.

Off-Line Computation Function

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

int Setup()

returns 0 if all is OK. This function may be not needed, it depends on user
implementation.

Inverse Jacobian Function

If Inverse Jacobian Matrix can be analytically computed it can be provided together with
all user kinematics functions, but if not this function can be omitted.

int InvJacobian (double *JointPoint,double *JointVel,double
*CartesianPoint,double *CartesianVel)

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Linking the Kinematics Functions to the User template

Once the user kinematics functions are available they can be linked to template group
(model=5) using the following function:

int rbt_SetUserKin(int rbt_id, RBT_UFUN &user);

Where rbt_id is the template group id, obtainable querying ElementId of a group. And
“user” a structure (class) defined in rbtUkin.typ header file containing pointers to all
user functions.

Interface user structure (class):

class RBT_UFUN
{
 public:

 int (*setup)();
 int (*ikin)(int, double *, double *);
 int (*ijac)(double *, double *,double *, double *);
 int (*dkin)(double *, double *);
 int (*acces)(double *);
 int (*cfg)(double *);
 RBT_UFUN()
 {
 ikin = 0;
 ijac = 0;
 dkin = 0;
 acces = 0;
 cfg = 0;
 setup = 0;
 }
};

The class should be first filled with appropriate functions and then transferred to
rbt_SetUserKin function. Once the function is called there is no further relevance of this
structure and it can be deleted.

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

Example

An example of user-defined kinematics will be given using the SCORBOT robot.
Attached files: User.cpp, TUKIN.PRG.

In the Scorbot robot, the second, third, and fourth joint axes are parallel to one another
and point into the paper at points A, B, and P, respectively. The first joint axis points up
vertically, and the fifth joint axis intersects the fourth perpendicularly. Find the overall
transformation matrix for the robot.

Table 9.1 D-H parameters of the Scorbot robot
 iα ai di iθ
1 -π/2 a1 d1 θ1
2 0 a2 0 θ2
3 0 a3 0 θ3
4 -π/2 0 0 θ4
5 0 0 d5 θ5



















−

−

=

1000
010

0
0

1

1111

1111

1
0

d
sacs
casc

A
θθθ
θθθ

 (a)

Fig. E4. Schematic diagram of the Scorbot robot

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

















 −

=

1000
0100

0
0

2222

2222

2
1 θθθ

θθθ
sacs
casc

A

 (b)

















 −

=

1000
0100

0
0

3333

3333

3
2 θθθ

θθθ
sacs
casc

A

 (c)



















−

−

=

1000
0010
00
00

44

44

4
3 θθ

θθ
cs
sc

A

 (d)

















 −

=

0000
100

00
00

5

55

55

5
4

d
cs
sc

A
θθ
θθ

 (e)

Multiplying (b), (c), (d) yields



















−
+
+−

=

1000
0010

0
0

22233234234

22233234234

4
1 θθθθ

θθθθ
sasacs
cacasc

A

 (f)

where jiij θθθ += , and kjiijk θθθθ ++=

Treat θ2, θ23, and θ234 as new variables. In this way, the rotation matrix contains only one
variable, θ234, while the position submatrix contains two variables, θ2 and θ23.
Multiplying (a), (f), and (e) yields the overall transformation matrix 0A5 as:

 2345233221z

23452332211y

23452332211x

234z2341y2341x

5234z5152341y5152341x

5234z5152341y5152341x

cdsasadq

,)sdcacaa(sq
,)sdcacaa(cq

cw,ssw,scw

ssv,ccscsv,cssccv

csu,scccsu,sscccu

θ−θ−θ−=

θ−θ+θ+θ=
θ−θ+θ+θ=

θ−=θθ−=θθ−=

θθ=θθ−θθθ−=θθ+θθθ−=

θθ−=θθ−θθθ=θθ+θθθ=

 (g)
Since this is a 5-dof manipulator, only five of the six parameters of the end-effector can
be described. Very often, the desired position of a point and the direction of a line in the
end-effector are specified.
(a) Direct Kinematics

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

For the direct kinematic problem, we simply substitute the given joint angles into Eq.(g)
to obtain the end-effector position and the orientation in terms of u , v , and w .
(b) Inverse Kinematics
For the inverse kinematic problem, only 5 of the 12 parameters can be specified at will.
This is because the manipulator has only 5-dof. It is obvious that the position vector q
and the approach vector w cannot be specified simultaneously, due to the fact that q and
w together depend only on 4 degrees of freedom of the manipulator. In this example, q

and u are specified. A more straightforward approach by multiplying both sides of the

loop-closure equation by
1

1
o)A(−

; that is

1

1
o)A(−

5
4

4
3

3
2

2
1

5
o AAAAA = (h)

Equating the first column of the (h),

 52341y1x ccsucu θθ=θ+θ (i)

 5234z csu θθ=− (j)

 51y1x scusu θ−=θ+θ− (k)
Similarly, equating the fourth column of Eq.(h)

 23452332211y1x sdcacaasqcq θ−θ+θ=−θ+θ (l)

 2345233221z cdsasadq θ+θ+θ=+− (m)

 0cqsq 1y1x =+− θθ (n)
The first joint angle θ1 is obtained by (n)：

 xy
1

1 q/qtan −=θ
There are two solutions for θ1= θ1

*or (θ1
*+ π). Once θ1 is found, two solutions for θ5 are

obtained from (k):

*
51y1x

1
5)cusu(sin θ=θ−θ=θ −

 , or
*
55 θ−π=θ .

Corresponding to each solution of (θ1, θ5), Eqs.(i) and (j) produce a unique solution of
θ234

]c/)sucu(,c/u[2ATAN 51y1x5z234 θθ+θθ−=θ
Now, solving Eqs.(l) and (m) for θ2 and θ3

 123322 kcaca =θ+θ (o)

 223322 ksasa =θ+θ (p)

Where 234511y1x1 sdasqcqk θ+−θ+θ= and 23451z2 cddqk θ−+−=
Summing squares of the above equations yields

2
2

2
1332

3
3

2
2 kkcaa2aa +=++ θ

 ⇒]aa2/)aakk[(cos 32
2
3

2
2

2
2

2
1

1
3 −−+=θ −

and there are two solutions for θ3. If θ3=θ3

* is also a solution, θ3=-θ3
* is also a solution.

Once θ3 is known, θ2 can be solved by expanding Eqs.(o) and (p) as follows:

 12332332 ks)sa(c)caa(=θθ−θθ+

C ON

Servotronix Motion Control Ltd. 21C Yagia Kapayim st. Petach Tikva 49130, Israel

Phone: +972-3-9273800, Fax: +972-3-9228075

 22332233 ks)caa(c)sa(=θθ++θθ

 ⇒ 



=θ
=θ

Bs
Ac

2

2

Hence, corresponding to each solution of (θ1, θ3, θ5, θ234), we obtain a unique solution of
θ2:
).A,B(2tanA2 =θ
Finally, θ4 is obtained by

 322344 θ−θ−θ=θ
We conclude that corresponding to each given end-effector location, there are at most
eight inverse kinematic solutions.

Code:
See attached User.cpp

	Introduction
	Creating a template
	Adding user code
	Internal presentation of Cartesian points
	Internal presentation of Joint points
	Robot Configuration Flags
	Kinematics functions
	Configuration Function
	Inverse Kinematics Function

	Direct Kinematics Function
	Working Envelope Test Function

	Off-Line Computation Function
	Inverse Jacobian Function
	Linking the Kinematics Functions to the User template
	Example
	Code:

