
Project: Kino-Dynamic Interpolation
by: Mirko Borich

2Strictly confidential Back to agenda Sep-10

Overview
Motivation

Pick & place movements between workspace obstacles. Must be as fast as
possible. No need to specify any velocity, robot should go in minimum time
from place to place without hitting anything on it’s path.

Kino-Dynamic Interpolation

3Strictly confidential Back to agenda Sep-10

Overview
We are speaking about near Kino-Dynamic straight-line interpolation.

• Defined in http://en.wikipedia.org/wiki/Kinodynamic_planning as:
“In robotics and motion planning, kinodynamic planning is a class of
problems for which velocity and acceleration bounds must be satisfied”

AMCS system:
Straight line motion interpolation where one of the axes always reaches but

not exceeds it’s maximum values of velocity, acceleration and jerk (and
stays there as long as possible - desirable). The other axes must not
breach these values.

Kino-Dynamic Interpolation

Note: No requirements on motions Cartesian velocity, it just
needs to start and end at zero. No cruising demanded.

http://en.wikipedia.org/wiki/Kinodynamic_planning
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Motion_planning
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Acceleration

4Strictly confidential Back to agenda Sep-10

OverviewToday (version 4.7.12 and before)
Straight line motion (MOVES) – keeps cruise velocity constant.

– This means that in cases the joint velocity exceeds it’s maximum the
whole movement will be slowed down (instead only at this place) to
keep the joint velocity value below max.

Kino-Dynamic Interpolation

Cartesian cruise velocity

Joint velocityvmax

 Additional problem:
 It is hard to predict
points of max joint values
on the path!

5Strictly confidential Back to agenda Sep-10

OverviewToday we have two typical scenarios:

• The max joint values are underestimated – cartesian cruise velocity is too
high causing motion to exceed its joint maximums which causes either
stopping due to drive errors (if values are too high > 120%) or increased
position error (if the values are under certain thresholds < 120%).

• The max joint values are overestimated – cartesian cruise velocity is lower
than it could be. Prolonged system cycle-time (slowdown of machine).

In both case it is a headache for the application engineer having to fine-tune his
application. Manually finding proper values of cruise velocity. Increased
setup time.

Current solution: Straight line (MOVES) is not used in most of time-critical
applications. Joint interpolation (MOVE) is used instead. Possibility of
collisions. Prolonged cycle-time due to “work-around-ing“ MOVES with
MOVE

Kino-Dynamic Interpolation

6Strictly confidential Back to agenda Sep-10

OverviewExample (from Artur’s MBCRC case study document):
Speedpicker. Moving Straight (MOVES) line from one end to another.
• Cartesian Translational Acceleration is limited by joint’s 1 AccMax
• Local limit in joint 1 limits the whole motion
• MOVES: Start: #{0, -290} Target: #{0, 290}
• Duration: 484 ms.

Kino-Dynamic Interpolation

y

-x

7Strictly confidential Back to agenda Sep-10

OverviewKinoDynamic Interpolation takes only 372 ms!

Kino-Dynamic Interpolation

• Which is 30% faster.
• And this is not the most critical example! There are even bigger differences!

8Strictly confidential Back to agenda

Theory of operation:

Sep-10

Kino-Dynamic Interpolation

Profiler

Profiler Straight Line Inverse
Kinematics

Profiler Straight Line Inverse
Kinematics

Straight Line Inverse
Kinematics

MOVE

MOVES

MOVESKD

l

lc

lj lc

qmaster

q

q

p

p

9Strictly confidential Back to agenda

Theory of operation:

Sep-10

Kino-Dynamic Interpolation

10Strictly confidential Back to agenda

Things to be aware of:

• Kino-Dynamic movements do not have constant Cartesian velocity (not
applicable in gluing/cutting applications).

• Kino-Dynamic movements are not usable in Conveyor-Tracking applications
(because the link between joint and Cartesian positions is not existing on
movement–level).

• Kino-Dynamic movements can not be blended using BlendingMethod =1
(CP). But SP blending is OK!

Sep-10

Kino-Dynamic Interpolation

11Strictly confidential Back to agenda

Test Case:
• Moving between points of an octagon inscribed in a circle of radius 300mm

(arm length of speed-picker).
• Results:

• Total time of all motions (8x8 = 64 movements) is:
• Using regular MOVES: 25.213 sec
• Using MOVESKD: 15.645 sec

• This is 61% faster(total)!
• Best case: 86%!

Sep-10

Kino-Dynamic Interpolation

12Strictly confidential Back to agenda

Even Better (Speed-Picker singular-configuration is treatable!):
angle = 70 factor = 289%
angle = 71 factor = 287%
angle = 72 factor = 284%
angle = 73 factor = 284%
angle = 74 factor = 282%
angle = 75 factor = 279%
angle = 76 factor = 276%
angle = 77 factor = 276%
angle = 78 factor = 274%
angle = 79 factor = 274%
angle = 80 factor = 272%
angle = 81 factor = 272%
angle = 82 factor = 272%
angle = 83 factor = 273%
angle = 84 factor = 297%
angle = 85 factor = 353%
angle = 86 factor = 482%
angle = 87 factor = 487%
angle = 88 factor = 487%
angle = 89 factor = 484%
angle = 90 factor = NA (regular MOVES, can't do it!)

Sep-10

Kino-Dynamic Interpolation

	Project: Kino-Dynamic Interpolation by: Mirko Borich
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	PowerPoint Presentation
	Slide 9
	Slide 10
	Slide 11
	Slide 12

