Project: Kino-Dynamic Interpolation
by: Mirko Borich

Kino-Dynamic Interpolation

Motivation

Pick & place movements between workspace obstacles. Must be as fast as
possible. No need to specify any velocity, robot should go in minimum time
from place to place without hitting anything on it’s path.

Back to agenda Strictly confidential Sep-10

Kino-Dynamic Interpolation

We are speaking about near Kino-Dynamic straight-line interpolation.

* Defined in http://en.wikipedia.org/wiki/Kinodynamic_planning as:

“In robotics and motion planning, kinodynamic planning is a class of
problems for which velocity and acceleration bounds must be satisfied”

AMCS system:

Straight line motion interpolation where one of the axes always reaches but
not exceeds it's maximum values of velocity, acceleration and jerk (and
stays there as long as possible - desirable). The other axes must not
breach these values.

Note: No requirements on motions Cartesian velocity, it just
needs to start and end at zero. No cruising demanded.

Back to agenda Strictly confidential Sep-10

http://en.wikipedia.org/wiki/Kinodynamic_planning
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Motion_planning
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Acceleration

Kino-Dynamic Interpolation

Today (version 4.7.12 and before)
Straight line motion (MOVES) — keeps cruise velocity constant.

— This means that in cases the joint velocity exceeds it's maximum the
whole movement will be slowed down (instead only at this place) to
keep the joint velocity value below max.

A Cartesian cruise velocity

v

: ! E Additional problem:
It is hard to predict

points of max joint values
on the path!

A ymax Joint velocity

v

Back to agenda Strictly confidential Sep-10 4

Kino-Dynamic Interpolation

Today we have two typical scenarios:

* The max joint values are underestimated — cartesian cruise velocity is too
high causing motion to exceed its joint maximums which causes either
stopping due to drive errors (if values are too high > 120%) or increased
position error (if the values are under certain thresholds < 120%).

* The max joint values are overestimated — cartesian cruise velocity is lower
than it could be. = Prolonged system cycle-time (slowdown of machine).

In both case it is a headache for the application engineer having to fine-tune his
application. Manually finding proper values of cruise velocity. - Increased
setup time.

Current solution: Straight line (MOVES) is not used in most of time-critical
applications. Joint interpolation (MOVE) is used instead. - Possibility of
collisions. Prolonged cycle-time due to “work-around-ing“ MOVES with
MOVE

Back to agenda Strictly confidential Sep-10 5

Kino-Dynamic Interpolation

Example (from Artur’'s MBCRC case study document):

Speedpicker. Moving Straight (MOVES) line from one end to another.
* Cartesian Translational Acceleration is limited by joint's 1 AccMax

* Local limit in joint 1 limits the whole motion
 MOVES: Start: #{0, -290} - Target: #{0, 290}

* Duration: 484 ms.

nnnnnnnn

JI\

y Back to agenda

Strictly confidential

Sep-10

Kino-Dynamic Interpolation

KinoDynamic Interpolation takes only 372 ms!

* Which is 30% faster.
* And this is not the most critical example! There are even bigger differences!

34000.00
32000.00
30000.00
25000.00
26000.00
24000.00
22000.00
20000.00
1&000.00
16000.00
14000.00
12000.00
10000.00

a0o0.00

E000.00

400000

2000.00
0.00 s ———————————
2000.00 i

— —— ——— -
-4000.00 l

-6000.00

-B000.00
-10000.00
-12000.00
-14000.00
-16000.00
-15000.00
-20000.00
-22000.00
-24000.00
-26000.00
-28000.00
-30000.00
-32000.00
-34000.00
-36000.00
-38000.00

Signal value

yOO 80 90 100 40 120 130 140 450 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 37O 380 390 400 410 420 430 440 450 480 470 480 490
Time in ms (Sercos cycls time: 4ms)

— A5 PCWD — SETPOIMT{1 } — A5 AMAK — AGACCELCMD AT AMAK — ASACCELCMWD — ABMCMD — ABVCMD — SETPOINT{Z} — ASMCMD AGPCMD — ABACCELCMD — ABPCMD

Back to agenda Strictly confidential Sep-10 7

Kino-Dynamic Interpolation

Theory of operation:

MOVE
[
Profiler >J/)
MOVES
lc
Profiler > Straight Line LN .Inversg LN
Kinematics
___ |
MOVESKD
/4 & p Inverse q

—> Straight Line [—>

Kinematics

Profiler —‘
' , Inverse
] <
IL. Straight Line [<71 i o matics W
Qmaster

Kino-Dynamic Interpolation

Theory of operation:

I-Profiler

Cartesian Coordir

R g

L §

H‘\I’"\T AL TAATIT

r

TR

Back to agenda

Strictly confidential

Sep-10

aysINoN

Kino-Dynamic Interpolation

Things to be aware of:

* Kino-Dynamic movements do not have constant Cartesian velocity (not
applicable in gluing/cutting applications).

* Kino-Dynamic movements are not usable in Conveyor-Tracking applications
(because the link between joint and Cartesian positions is not existing on
movement—level).

* Kino-Dynamic movements can not be blended using BlendingMethod =1
(CP). But SP blending is OK!

Back to agenda Strictly confidential Sep-10 10

Kino-Dynamic Interpolation

Test Case:

* Moving between points of an octagon inscribed in a circle of radius 300mm
(arm length of speed-picker).

* Results:
* Total time of all motions (8x8 = 64 movements) is:

* Using regular MOVES: 25.213 sec

* Using MOVESKD: 15.645 sec _,

« This is 61% faster(total)! =

18000

160,00

* Best case: 86%! o

100400
8000
5000

. dom

2 200

040
2000
b 4000
000
2000
40000
42000
44000
46000
48000
20000
2000
20000
26000

SETPOINT

<260 240 -220 00 180 {60 1400 420 00 B0 BD 40 20 O 20 40 G0 &0 100 120 140 {BD 180 200 220 240 260
SETPOINT{1 }

Back to agenda Strictly confidential Sep-10

Kino-Dynamic Interpolation

Even Better (Speed-Picker singular-configuration is treatable!):
angle = 70 factor = 289%
angle = 71 factor = 287%
angle = 72 factor = 284%
angle = 73 factor = 284%
angle = 74 factor = 282% L4
angle = 75 factor = 279% .

angle = 76 factor = 276%
angle = 77 factor = 276%
angle = 78 factor = 274%
angle = 79 factor = 274%
angle = 80 factor = 272%
angle = 81 factor = 272%
angle = 82 factor = 272%
angle = 83 factor = 273% S
angle = 84 factor = 297%
angle = 85 factor = 353%
angle = 86 factor = 482% Y
angle = 87 factor = 487%

angle = 88 factor = 487%

angle = 89 factor = 484%

angle = 90 factor = NA (regular MOVES, can't do it!)

Back to agenda Strictly confidential Sep-10 12

	Project: Kino-Dynamic Interpolation by: Mirko Borich
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	PowerPoint Presentation
	Slide 9
	Slide 10
	Slide 11
	Slide 12

